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ABBREVIATIONS AND ACRONYMS 

 

AO   adaptive optics 
CAD   computer aided design 
CAE   computer aided engineering 
ECSS   European Cooperation for Space Standardization 
E-ELT   European Extremely Large Telescope 
ESO   European Southern Observatory 
FDR   Final Design Review 
FTE   Full Time Equivalent (year) 
GLAO   ground layer adaptive optics 
GMT   Giant Magellan Telescope 
JWST   James Web Space Telescope 
LESIA   Laboratoire d'Etudes Spatiales et Instrumentations pour l'Astrophysique 
LTAO   laser tomography adaptive optics 
MAIT   Manufacture, Assembly, Integration, Test 
MAORY  Multi-conjugate Adaptive Optics Relay 
MCAO  multi-conjugate adaptive optics  
MICADO  Multi-adaptive optics Imaging Camera for Deep Observations 
MPE   Max-Planck-Institut für extraterrestrische Physik 
MPIA   Max-Planck-Institut für Astronomie 
NOVA   Nederlandse Onderzoekschool voor Astronomie 
OAPD   Osservatorio Astronomico di Padova 
PAE   Preliminary Acceptance in Europe 
PAO   Preliminary Acceptance at the Observatory 
PA/QA  Product Assurance / Quality Assurance 
PDR   Preliminary Design Review 
PSF   Point Spread Function 
RTD   Real Time Display 
SCAO   single-conjugate adaptive optics 
TMT   Thirty Meter Telescope 
USM   Universitäts-Sternwarte München 
WP   Workpackage 
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1 SCOPE 

This document describes the top level user requirements for the data reduction of MICADO 
observations. It lays down the requirements on the data processing infrastructure and data 
reduction procedures required to achieve the MICADO science goals. The requirements also 
involve the observational operations plan, calibration plan, and the technical design of 
MICADO, MAORY and E-ELT. An important aim of the document is to identify which 
requirements can be fulfilled by implementing well-known existing approaches and solutions 
and which requirements require further research and/or development.  

 

2 APPLICABLE AND REFERENCE DOCUMENTS 

2.1 Applicable Documents 

The following applicable documents form a part of the present document to the extent specified 
herein. In the event of conflict between applicable documents and the content of the present 
document, the applicable document shall be taken as superseding. 

AD1 Common definitions and acronyms , E-ESO-SPE-313-0066, Issue 1 

AD2 E-ELT Interfaces for Scientific Instruments, E-TRE-ESO-586-0252, issue 1 

AD3 Call for Proposal For a Phase A Study of a High Angular Resolution Camera for the E-
ELT, Specifications of the Instrument to be studied, E-ESO-SPE-561-0097, v1.0  

AD4 Statement of Work for the Phase A Design of MICADO, E-SOW-ESO-561-0127, v1.0 

2.2 Reference Documents 

RD1 MICADO Instrument Development and Management Plan, E-PLA-MCD-561-0020, 
v1.0 

RD2 MICADO Scientific Analysis Report, E-TRE-MCD-561-0007, v2.0 

RD3 MICADO System Overview, E-TRE-MCD-561-0009, v2.0 

RD4 MICADO Design Trade-Off and Risk Assessment, E-TRE-MCD-561-0010, v2.0 

RD5 MICADO Opto-Mechanical Design and Analysis, E-TRE-MCD-561-0011, v5.0 

RD6 MICADO Photometric Study, E-TRE-MCD-561-0023, v1.0 

RD7 MAORY Phase A Study Status at Midterm Review Progress Meeting E-TRE-INA-528-
0021 issue 1 
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3 PROJECT OVERVIEW 

MICADO is the Multi-AO Imaging Camera for Deep Observations, which has been designed 
to work with adaptive optics on the European Extremely Large Telescope. The instrument will 
image and obtain long-slit spectra at the diffraction limit of the E-ELT. The imaging will be 
done through both broad- and narrow-band near-infrared filters with a wide (up to nearly 60”) 
field of view. MICADO is primarily intended to work with the multi-conjugate AO system 
MAORY; but also, as far as is reasonably possible, it will be designed to work with other AO 
systems, and includes its own SCAO module. 

4 INTRODUCTION 

4.1 Scientific requirements 

The MICADO science drivers are discussed fully in the Scientific Analysis document (RD2). 
The primary science drivers are re-iterated here for local reference. MICADO can address a 
wide range of astrophysical topics using its relatively wide field, high resolution and high 
sensitivity: 

• The environment and internal structure of galaxies and AGN at high redshift 

• Star formation history of local galaxies through studies of spatially resolved stellar 
populations;  

• Stellar orbits close to the central massive black hole in the Galactic Centre which test 
the strong regime of gravity.  

• Internal kinematics in nearby large and dwarf galaxies to constrain formation and 
evolution of galactic nuclei and dark matter content respectively.  

• Internal motions in star clusters to detect intermediate black holes and cluster orbits to 
constrain the formation and evolution of the Galaxy.  

 

The science trade-off and the detailed science cases described in the Science Analysis 
document (RD2) have led to the baseline science requirements given in Table 1. 

Table 1: summary of baseline science requirements for data reduction 
Requirement Baseline Design Comment 

Field of View ≤60”  Smaller fields sufficient for several science drivers 

Spatial 
Sampling 

3mas 

≤2mas  

primary arm 

auxiliary arm, for crowded fields 

Total 
Wavelength 
Coverage 

0.8-2.4μm  



MICADO       
Consortium 

MICADO PHASE A TOP LEVEL DATA 
REDUCTION USER REQUIREMENTS 

Doc: E-TRE-MCD-561-0024 
Issue:  1.0                           
Date:   19.10.09                  
Page 7 of 24 

 

MICADO Consortium 

 

Throughput >60%   

Instrumental 
Distortions 

stable Instrumental distortion variations should not be a 
dominant contributor to astrometric error budget 

Number of 
Filters 

≥20 per arm Both broad- and narrow-band filters 

Image Quality 70% Strehl at 1μm  

Photometric 
Accuracy 

0.03mag In units of instrumental magnitude system 

Astrometric 
Accuracy 

50μas Relative accuracy across the full field of  a single 
carefully calibrated exposure 

Spectroscopy  R~3000  
 

4.2 System overview and observing configurations 

The MICADO System Overview (RD3) gives the full instrumental description. Here we 
summarize characteristics relevant for the data reduction. 

The camera consists of reflective optics (except for the ADC, entrance window and filters) that 
images a contiguous field, having a ~75arcsec diagonal size, onto a focal plane.  The ADC is 
located inside the MICADO cryostat. The focal plane of the primary arm is tiled with detectors, 
and provides 16000×16000 pixels at a scale of 3mas/pixel. As a baseline we adopt the 
HAWAII-4RG (with a 15μm pixel size), which has been developed to meet the stringent 
requirements of space astrometry. The optics are a fixed monolithic entity. The focal plane 
array is on a single fixed mount. The instrument has a gravity invariant rotation for optimal 
astrometric stability. The design allows for a large wheel with space for 20 filters. Both the 
filter wheels, as well as the focal plane mechanism, are supported and driven at their rim.  

 

Figure 1: illustration showing how the focal plane will be divided in MICADO. The primary imaging field is 
approximately 53”×53” and will be imaged at a scale of 3mas/pixel by an array of 4×4 HAWAII-4RG detectors. 
The auxiliary arm has a FoV which is adjacent to the primary one with a FoV. 
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In addition to the primary imaging arm, MICADO has an auxiliary arm which observes a field 
adjacent to the primary field. This arm has a separate filter wheel, providing space for an 
additional 20 filters, and requires only 1 additional HAWAII-4RG detector. In the current 
design, the auxiliary arm provides 2 important complementary capabilities. First, it can image 
with 1.5 and 4mas pixel scales over a 6”x6” and 16’’x16’’ field of view respectively. The 
1.5mas pixel scale is crucial for accurate astrometry in the most extremely crowded fields. 
Second, slit spectroscopy can be obtained using a 4mas pixel scale and R~3000-5000 grisms. 
The slit mask is located in the input focal plane mask. 

For the requirements described in this document it is assumed that imaging will be taken 
through broad- and narrow-band filters with central wavelengths in the range 1.0-2.5micron. 
The total spectral range is assumed to span 0.8-2.35 micron.  

MICADO’s photometric and astrometric performance will depend on careful calibration. There 
will be internal calibration sources, such as an integrating sphere for photometry (flatfields) and 
discharge tubes for spectroscopic work (wavelength calibration). High precision astrometry 
requires special calibrations using an accurate Hartmann screen (aka ‘calibration mask’) placed 
in the camera focal plane to allow long term monitoring and calibration of the pixel scale and 
field distortions. This is particularly important since there will inevitably be discontinuities 
between the detectors in the MICADO primary focal plane (both translational and rotational), 
and because the MAORY field distortions will rotate with respect to those of MICADO.  

All the above calibration sources will be located inside a dedicated calibration unit, which will 
be mounted in front of the AO system at the input focal plane. This is particularly necessary for 
the distortion calibration, which must be done here because (i) the focal plane is very nearly 
flat, and (ii) it is then possible to calibrate the MAORY distortions.  

5 REQUIREMENTS ON DATA REDUCTION INFRASTRUCTURE 

5.1 Overview MICADO data flow   

ESO will define the eventual framework for data processing and reduction for E-ELT and its 
instruments. Here our baseline assumed MICADO data flow and processing is given.  

Once the raw MICADO data have been created at the E-ELT site, raw data and first quality 
control metadata will flow through ESO-DMOD (archive and possibly processing) and 
subsequently to MICADO processing units and to the MICADO user communities. MICADO 
processing units are those entities that process MICADO data. The MICADO user communities 
consist of those entities that use data products from MICADO, but perform no processing. Both 
the processing units and user community are assumed to be within the astronomical community 
which can include ESO, research teams at universities and institutes, the Virtual Observatory 
and data centers, single astronomers. For MICADO data reduction the following data classes 
are defined: 

• Science data: pixel data and metadata containing information on the science targets or 
their sky frames (if sky offset positions are used), 

• Calibration data: pixel and metadata required to remove the instrumental signature from 
the science data and to photometrically/astrometrically/flux-calibrate/wavelength-
calibrate the science data. 
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For successful reduction and quality control of MICADO data 3 data levels are needed: 
L0. Raw data: all science and calibration data as read out from the detectors and the 

associated metadata 
L1.  Instrumental-calibrated data: science and calibration data from which the instrumental 

signature has been removed. 
L2. Science-calibrated data: photometrically-/astrometrically-/flux-/wavelength-calibrated 

science data including stacks and coadditions of these. 

The type of data within each data class in each data level is listed in Table 1a for imaging and 
in Table 1b for spectroscopy.  

The 3 data levels are linked by 2 processing chains: 
• L0→L1: processing from raw to instrumental-calibrated data 
• L1→L2: processing from instrumental-calibrated data to science-calibrated data  

Processing units will operate one or more processing chains and entities of the user community 
will receive data at one or more process levels. It is assumed that the ESO archive will contain 
at least the raw data and possibly instrumental- and science-calibrated data. Figure 1 shows 
how data at different process levels is transferred among these entities.  

 

 

Figure 2: Anticipated transfer and processing of the 3 levels of MICADO data between ESO archive, processing 
units and user communities. Each transfer of each data level is represented by a colored arrow. Solid/dotted arrows 
indicate expected/tentative data transfers. Data transfer and processing should be able capable of dealing with 
nightly observational data rates of up to ~6 Terabytes of data. 
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The entities range from single users to large data centers or institutes and thus have diverse 
locations, hardware resources and operating platforms. 

Note that documentation is considered part of the infrastructure. It shall contain: 

• take-up manual, describing how to implement the data reduction architecture from 
installation of the infrastructure until production of final products of data reduction  

• Description of implemented routines  

In the following the top-level requirements are given for the infrastructure required for handling   
the MICADO data reduction.   

Two aspects related to the MICADO imaging science cases drive requirements on the data 
reduction infrastructure beyond the more common aspects: 

• High data rates (~6 TByte/night) for the primary arm imaging due to the combination of 
short exposures and 16 detectors. 

• Maintaining a long-term stable observing system to obtain high precision astrometry for 
many years. 

The MICADO spectroscopic mode can be handled quite well with today’s technology and 
common procedures.   

5.2 Data rates and volumes 

The maximum data rates will be obtained with imaging using the 16 detectors in the Primary 
Arm. A single read-out for the Primary Arm imaging is saved to single-precision floating points 
resulting in a (16K)2×4Byte = 1GByte image. The typical maximum data rate for MICADO 
corresponds to a full night of imaging assuming a long night of 8 hours science observing. This 
data rate is computed assuming the following numbers: 

• Acquisition time per 1 hour OB: 300 sec 

• Read-out time: 1 sec 

• Overhead small dither: 2 sec 

• Overhead large dither: 20 sec 

• Integration time per read-out: 3 sec 

We assume a sequence of 10 pointings in a small dither pattern with 5 read-outs per pointing 
after which a large dither is applied. Within a 1hour OB this sequence can be repeated 14 times: 
14 × [((3s exposure + 1s read-out) × 5 repeats +2s overhead small dither) × 10 repeats + 20s 
overhead large dither].  

The result is 700 detector read-outs per hour yielding 58% observing efficiency. This results in 
5.6 TB of raw science data per 8 hours science observing. The sum of night time and day time 
raw calibration data is estimated at 0.3 TB. Thus in total MICADO acquires ~6 TByte of raw 
observational data per night. This is 1 to 2 orders of magnitude more than from the current 
largest data producers at Paranal: VISTA/VIRCAM is about a factor 25 smaller and 
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VST/OmegaCAM a factor 75 (priv. comm. M. Neeser).  Moore’s law, if continued will yield 
more than a factor 300 in storage/computing in 7 years (2010-2016). 

Processing to data level 1 requires weight frames for each science frame. Processing to data 
level 2 will result in stacked data in addition to fully calibrated individual science exposures. 
The result is an approximate factor of 2 bigger science data volumes at both data level 1 and 2 
compared to the corresponding raw data (level 0).  If all data at all levels are stored this results 
in 5×6 = 30Tbyte / night, which corresponds to 10 Petabyte / year. 

The nightly data volumes are summarized in Table 2. For imaging with the Auxiliary Arm the 
corresponding data volumes are 1/16th as the image consists of only 1 detector frame.  Data 
volumes for spectroscopy will be negligible compared to the Primary Arm imaging.   

As indicated in Table 2, a MICADO archive which contains science and calibration data at data 
levels 0 and 1 is expected to aggregate at least several Petabyte per year.  

Requirement: the entities involved in the MICADO science processing shall be able to handle 
an observational data rate of ~6Terabyte / night. This means that at the E-ELT storage and 
processing for quality control purposes shall be able to deal adequately with such a rate. For 
example, processing time shall not be the time limiting factor for zero and first level QC at E-
ELT and/or ESO-DMOD. Also the data transfer between E-ELT and archive shall keep up with 
this rate. Provided Moore’s law holds, the data transfer via at least devices such as USB disks 
or their equivalents, the long-term storage and daily processing of these nightly volumes will be 
feasible by 2018. Processing units for MICADO science data shall be able to process data 
volumes of 6 Terabyte per observing night requiring data storage of up 30 Terabyte for each 
observing night.  

Requirement: Entities involved in MICADO calibration processing shall be able to handle 
observational data rates of ~0.3 Terabyte / night.     

A reduction in data volume is desirable to maximize operation speeds and to minimize storage 
costs.  Volume reduction can be achieved by on-detector addition and (does not exit on floats) 
compression techniques.  Possibly lossy detection techniques (e.g., compressed sensing) need 
to be investigated.   

Requirement: Planning and costing of reduction of MICADO data volumes shall be 
investigated. We note that co-adding frames in the detector control system is one option; and 
the use of narrow band filters or OH suppressing filters will inevitably lead to longer exposure 
times, and hence also reduce the total data volume. 

Requirement: Data products (pixel data, headers, metadata, catalogues) shall be compliant to 
the standard requirements by ESO and the Virtual Observatory for the purpose of archiving and 
distribution. 
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Table 2: Data items for Imaging. Each column represents a data level and lists the data items created at that data 
level. They are split in science and calibration classes. 
 L0 

Raw 

L1  

Instrumental-
calibrated 

 

L2 

Science-calibrated, coadded 

Science Targets 

Sky-offets 

Targets 

 

Targets 

 

Calib Health-check data 

Twilight/artificial 
Flats 

Darks 

Photometric standards 

Astrometric standards 

Calib. Mask obs.  

 

Masterflats 

Darks 

Astrom fields 

Photom fields 

Calib. Mask obs. 

Parameters detectors:gains, 
readnoise 

 

 

Photometric solution 

Illumination Correction 

Astrometric solutions 

 

Table 3: Data items for spectroscopy. Each column represents a data level and lists the data items created at that 
data level. They are split in science and calibration classes. 
 L0 

Raw 

L1  

Instrumental-
calibrated 

 

L2 

Science-calibrated 

Science Target spectra 

Sky spectra 

Target spectra 

 

Target spectra 

 

Calib Health-check data 

 Flats 

Darks 

Arcs 

Telluric/flux 
standards 

 

Masterflats 

Darks 

 

Telluric/flux 
standards 

Detector parameters: gain, 
readnoise,… 

 

Wavelength solution 

Telluric/flux standards 
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Table 4: Maximum nightly data volumes for MICADO (imaging with the primary arm). The table assumes 1 night 
of 8hours of science observing and its associated calibrations. Each cell lists the number of images on top and its 
corresponding volume on the bottom. Images consist of 16 detector frames for the Primary Arm. For the Auxiliary 
Arm imaging the corresponding the number of images is the same while the volumes are 1/16th as the image 
consists of 1 detector frame.  Data volumes for spectroscopy are negligible compared to Primary Arm imaging. 

 L0 

Raw 

L1  

Instrumenal-calibrated 

 

L2 

Science-calibrated 

Total  

Science 

 

5600   

5.6TB 

11200 

11.2TB 

 

~11200 

11.3TB 

 

28000 

28TB 

Calib 

 

270 

0.3TB  

<<270 

<<0.3TB 

15000 

<<1TB 

~16000 

<1TB 

Total 6000 

6.0TB 

~12000 

~11.5TB 

~27000 

~11.5TB 

~44000 

~29TB 

 

The science cases that drive the stringent requirements on astrometry will observe targets at 
multiple epochs spanning up to many years. Continuous monitoring of all parameters of the E-
ELT+MAORY+MICADO system that (might) affect the astrometric accuracy will be essential 
for such programs. For example, trend analysis on astrometric solutions as a function of these 
parameters might lead to new insights increasing the astrometric accuracy. This requires a data 
reduction environment which efficiently traces data lineage. (As will be discussed later on, it 
needs to be investigated if this also requires an astrometric calibration plan set by monitoring 
requirements instead of the science observations of that particular night.)  

Requirement: The MICADO data reduction infrastructure (software and hardware) shall be 
capable of monitoring the E-ELT+MAORY+MICADO system in all aspects that can affect the 
astrometric accuracy.   

 

6 USER REQUIREMENTS FOR DATA REDUCTION: IMAGING 

The MICADO image pipeline will be based on near-infrared image reduction pipelines such as 
ISAAC and NACO at the VLT, VIRCAM at VISTA. Many steps in the data reduction are very 
similar to those of other multi-detector near-infrared imagers. MICADO data reduction differs 
from other instruments in two respects: i) the usage of MCAO, possibly preceded by other 
forms of AO, and ii) the extremely high astrometric accuracy required. The description of the 
data reduction requirements will therefore focus on requirements related to these topics and pay 
brief attention to well-established concepts and approaches in near-infrared image reduction. 
Each section describes a requirement of the image data reduction.  The objective of the 
requirement, its required accuracy and constraints on the requirement are given. 
Frequency/timing describes how often and when the requirement shall be fulfilled. Feasibility 
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is defined as “standard reduction” if the requirement can be fulfilled by standard well-
established procedures and algorithms. If not, a description is given of required further analysis 
and/or procedure development.   

6.1 Readnoise 

Objective: Measure the detector read noise as a standard health check. Pairs of zero-second bias 
exposures or a combination of frames illuminated by calibration lamp and darks can be used.  

Accuracy/constraints: accuracy should be in accordance with the lab values. 

Frequency/timing: daytime, daily, health check instrument 

Feasibility

6.2 Electronic Ghosts (Cross Talk) 

: standard reduction 

Images from one detector channel may produce secondary images (ghosts) on other channels 
either positive or negative in sign and may also even cross from one detector to another. In a 
stable environment, it is feasible to measure the contribution of cross talk from one channel to 
another by using bright point-like sources, and thereby define a comprehensive crosstalk 
matrix. Since this is environment specific, determining the final form of this matrix shall be 
one of the commissioning tasks, and earlier laboratory-based measurements might be used to 
characterise its likely impact and to investigate ways of minimising the effect.  

Objective: Determine the cross-talk matrix. 

Accuracy/constraints: The MICADO environment shall be stable so that the contribution of 
crosstalk from one channel to another is stable over time. Cross-talk terms should be small (i.e. 
<1%) so that a simple single-pass additive correction scheme can be used to correct for this 
problem. In addition to on-sky observations the calibration mask can be used. The calibration 
mask should cover the full detector plane to map the cross-talk amplitude. Lab results on cross-
talk will give the requirement on number of holes in the mask and whether the calibration mask 
shall be movable to sample the detector fully (i.e., dithered observations).  

Frequency/timing: daytime, frequency to be determined during commissioning. 

Feasibility

6.3 Linearity 

: standard reduction. The illuminated calibration mask can help to measure cross-talk 
comprehensively using well-established routines. 

Objective: In each frame resulting from a destructive read-out, correct the count of each pixel 
for non-linearity. 

Accuracy/constraints: accuracy of correction should be such that errors are negligible compared 
to the required photometric accuracy. Determining the non-linearity requires exposures with 
constant illumination over integration time. The calibration lamp flux should be stable enough 
for this.  

Frequency/timing: daytime, monthly. 
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Feasibility

6.4 Cold and hot pixels 

: standard reduction: well-established correction schemes exist for the standard read-
out scheme of IR detectors (reset-read-read mode). 

Objective: create bad pixel mask  

Accuracy/constraints: important for pipeline operations to fold into confidence map associated 
with each frame. Cold/dead pixels can be determined from instrumental flats with linear 
increasing/decreasing illuminaton and hot pixels from short darks.  

Frequency/timing: to be determined during lab tests / commissioning.  

Feasibility

6.5 Dark current 

: standard reduction 

Objective: create dark current rate estimates for each pixel. This includes the zero-level offset 
(‘bias’). This is a health-check 

Accuracy/constraints: Since the dark counts will depend on the exposure time, the DIT of the 
dark observations and science observations must match. 

Frequency/timing: daytime, daily health check instrument 

Feasibility

6.6 Flatfielding 

: standard reduction. 

Objective: create a map of pixel to pixel sensitivity variations per detector. The map is 
normalized to the average of all detectors to account for overall gain differences between 
detectors.  

Accuracy/constraints

6.7

: Maps are created by exposures with the internal calibration lamp (to 
determine pixel-to-pixel gains) and from twilight sky fields (to account for global non-
uniformity of the internal flatfields; see ).  

Frequency/timing: daytime and twilight, daily  

Feasibility

6.7 Illumination pattern 

: standard reduction 

Objective: Correct for large-scale illumination variations over the detector plane. The gain 
variation over all detectors is characterized by the twilight and sky flatfields under the 
assumption of an ideal flat illumination over the field of view. In practice this ideal flat 
illumination can be affected by stray light (sky concentration). The data needs to be corrected 
for this. Based on the outcome more elaborate calibration schemes can be developed.  

Accuracy/constraints: ≤1% accuracy over focal plane. Shall be determined by observations of 
photometric standards dithered across detectors.  2MASS photometry can give a useful first 
estimate. 
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Frequency/timing: first estimate during commissioning and checks once per month and after 
each major setup change.  

Feasibility

6.8 Persistence 

: standard reduction 

Persistence – arising from residual charge in ‘charge traps’ – is a severe problem for current IR 
detectors (such as the HAWAII-2RG), particularly with bright or saturated sources. It can have 
a measurable impact for hours afterwards. The cause of persistence is not well-understood. The 
strength of persistence varies between IR detectors and not always repeatable. 
 

Objective: Correct for persistence of counts from previous exposures.  

Accuracy/constraints: the cause of persistence and how to mitigate the effect by special read-
schemes shall be investigated. Correction schemes shall be based on these results. 

Frequency/timing: correction potentially for every detector read-out. 

Feasibility

6.9 Sky subtraction  

: requires further investigation 

Objective: subtract the sky background image for on-sky images as constructed from 
observations taken close in time to the science image. For fields without large-scale objects the 
sky frame can be constructed by filtering out the objects from dithered observations. For 
observations which includes large scale objects the sky background is estimated from blank sky 
observations taken for this purpose. 

Accuracy/constraints: Sky shall not vary significantly over the timespan of frames from which 
sky is created. The timespan is passband dependent as sky variations tend to be different for 
different wavebands. The optimal timespan shall be determined empirically during 
commissioning. Value of process parameters (minimum, maximum number of frames; single 
or iterative approach to mask-out astronomical sources from sky estimate), of generic 
subtraction method for sky subtraction shall be based on simulated data and verified during 
commissioning. 

Frequency/timing: for every science exposure and each photometric and astrometric on-sky 
calibration frame 

Feasibility

6.10 Photometric calibration 

: standard reduction 

Objective: determine the gain of the combined system of atmosphere+telescope+instrument 
(i.e., zeropoints and atmospheric extinction) relative to an instrumental photometric system.  

Accuracy and constraints: the standard requirement for the photometric calibration of the 
broad-band filters is to achieve an accuracy of better than 3% on the photometric scale in 
‘instrumental magnitudes’ as assigned to the units of the resultant output image of the pipeline. 
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The colour transformation terms of instrumental to a standard system should be better than 
20% on the photometric scale for photometric nights.  

It shall be determined if standards with high enough accuracy exist at magnitudes fainter than 
the bright cut-off for the E-ELT+MAORY+MICADO observations by the time of operations. If 
not, the calibration plan shall contain an observing campaign to establish secondary standards. 
It shall be determined from simulations if the flux measurement of standards requires PSF 
fitting instead of aperture photometry to meet the requirement on photometric accuracy. The 
feasibility of PSF reconstruction shall be investigated to increase the highest possible 
photometric accuracy. 

Frequency/timing: Deep atmospheric absorption bands (mainly due to water vapor) within filter 
passbands can have a significant impact on the effective transmission of atmosphere+filter 
observational system. The amplitude and timescales of atmospheric variations is site-dependent 
and shall be determined through a standard star observation over the full range of atmospheric 
conditions. This shall establish the requirement on allowed difference in time and atmospheric 
conditions compared to the observations to be calibrated. These observations should also 
establish the accuracy of colour terms for calibration from instrumental to a standard 
photometric system and correction of atmospheric extinction as a function of observing 
conditions. Many science cases require multi-epoch observations of the same field over a time 
span of typically months to years. In this case the photometric calibration to photometric 
standards on each night is desirable but not mandatory. Photometric calibration to the natural 
system can be done following relative calibration between epochs.  

Feasibility

6.11 Astrometric calibration 

: standard reduction except for the potential PSF fitting of standard star observations.  

The very high requirements on astrometry from several primary science drivers pose strong 
requirements on the astrometric calibration of MICADO. Therefore an overview is given first. 

The aim of the astrometric calibration is to accurately determine the projection matrix for 
converting pixel positions to sky positions. Three types of astrometric calibration can be 
defined in general. 

• Local relative astrometry: against internal reference source(s) within the FoV, i.e., 
observed simultaneously. The reference sources in this type of astrometric calibration 
are secondary standards and are instrument specific extrapolations from a standard 
astrometric reference catalog. The internal reference sources provide a limited accuracy 
position with respect to sky coordinates, but provide a high accuracy description of the 
instrumental profile, high positional accuracy within FoV. This is the type of astrometry 
required by the science drivers of MICADO up to an accuracy of 50microarcsec over 
the FoV, i.e., 1/60th of a pixel in the Primary Arm. 

• Global relative astrometry: against a set of reference points which cover a 
significantly larger sky area than FoV, i.e., not all references sources observed 
simultaneously. Combine multiple overlapping pointings to one astrometric unit. 
Multiple pointings can be from different epoch (5.15.4 and 5.15.5).This leads to same 
requirements as local relative astrometry. It requires multiple pointings with 
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considerable (>20%) overlap and use of internal reference sources/overlap sources. The 
current science drivers of MICADO do not require global relative astrometry. 

• Absolute astrometry: against a global set of astrometric reference sources. The global 
set of astrometric reference sources must be external, for example the 2MASS catalog 
and meet certain requirements. The current science drivers of MICADO do not require 
absolute astrometry. 

Four astrometric coordinate transformations were identified which form the framework for the 
astrometric calibration operations. 

1. Mapping of position of detectors in focal plane 

2. Mapping of geometric distortions 

3. Intra-epoch astrometric calibration 

4. Inter-epoch astrometric calibration 

The four transformations are schematically shown in Figure 3. 

A detailed assessment of the sources affecting the astrometric calibration and their error 
budgets is given in the Astrometry report in the Appendix. In the following we describe the 
astrometric calibration requirements for science observations which require maximum 
astrometric accuracy. 

 
Figure 3: the high-precision astrometric calibration of MICADO requires 4 coordinate transformations (red 
arrows) between 5 coordinate systems. For each transformation the physical effect requiring the coordinate 
transformation is given together with the spatial/astrometric reference frame used. 
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6.11.1 Position of Detectors in Focal Plane 

Objective: map the position of each pixel in each detector with respect to a perfect pixel plane. 
This means to map for each detector its shift, rotation and scale with respect to a perfect pixel 
plane. Dithered observations with the calibration mask will yield a set of 6 parameters per 
detector. Internal pixel mask inconsistencies are not measured. 

Accuracy/constraints: map the relative pixel position geometry to precision of ~2e-7 over focal 
plane. The number of holes (‘sources’) in the calibration mask shall exceed 50 and should 
preferably be 100. The positional accuracy of holes needs to be 4e-8m relative to each other. 
The size of the holes needs to be ≤30e-6m to meet the diffraction limit. The holes pattern on 
the calibration mask should not to be a regular pattern but a Poissonian distribution of holes to 
allow absolute positioning of detectors relative to each other. The dependency of the calibration 
mask properties on temperature variations must be measured from lab experiments. The 
movement / positioning accuracy of the calibration mask is irrelevant for the calibration 
process. MAORY (or other AO system) needs to be in a locked state (neutral correction) 
because the calibration mask is in front of the AO system. 

Frequency/timing: daytime, monthly initially, and also after each mechanical intervention to the 
camera 

Feasibility

6.11.2 MICADO + MAORY Geometric Distortions  

: expected to be feasible. The progenitor (H4RG-10) of the baseline detectors 
(H4RG-15) are designed for space astrometry mission. The H4RG-15 is expected to meet the 
same requirements (priv. comm. Richard Blank of Astronomy & Civil Space, Teledyne 
Imaging Sensors). Positional pixel stability of the H4RG-10 is better than 10 nm. Each 4K×4K 
detector is made with a single pixel mask.  

Objective: map the instrumental distortions induced by MAORY and MICADO. MICADO 
rotates with respects to MAORY. Therefore distortions from MAORY and MICADO need to 
be disentangled. 

Accuracy/constraints: 30microarcsec accuracy of distortion model. Needs to be verified how/if 
the distortion is a function of time, telescope orientation, rotator angle, ambient temperature, 
atmospheric pressure and humidity. The distortions will be measured by imaging hole positions 
with very precise spacing. The requirements on the calibration mask are given in 6.12.1. The 
calibration procedure must use the MICADO rotator to disentangle MAORY from MICADO 
distortions. MAORY needs to be in a standard neutral state (e.g. DMs flat, and/or loops closed 
on internal reference fibre). The geometric corrections shall be cross-checked via on-sky 
observations. Distortions must be constant in time to enough accuracy: at least for 30min to 
allow shift-and-add procedure in T1 determination (see 6.12.4). Use MICADO all 
configurations to determine separate distortions per configuration setting. 

Frequency/timing: to be determined after establishing which factors affect the distortions. 

Feasibility: deemed feasible. See section 4.2 of the report in the Appendix for an assessment 
study. The MAORY distortion is expected to be 0.0018% over FoV (RD7) and for MICADO a 
few % over the FoV (RD5).  Both distortions are expected to be constant in time to enough 
accuracy. 
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Note

6.11.3 Source Positions 

: Both 5.15.1 and 5.15.2 need to be derived simultaneously.  

Objective: determine the positions of science targets and reference sources in pixel space. Find 
MAORY distortion geometry for non-neutral corrections in closed loop state. 

Accuracy/Constraints: 5microarcsec accuracy at SNR of 10. Positions will be measured using 
PSF fitting. This requires determination of PSF model to 10-3. Determination of non-neutral 
MAORY distortion is for the global FoV and is expected to be modelled with polynomial 
functions to order at least 3. Such a full polynomial description requires 20 parameters, yielding 
a minimum of 5x10 sources per FoV, preferably 100. Photometric observing conditions are 
required. The procedure is to shift-add single exposures of T0 (order few second) totalling an 
exposure time T1. The relative rotation between adjacent detectors shall be ≤1/500 to allow 
shift-adding across detector gaps. Dither sizes shall be small enough to make non-linear 
distortions and effects of anisoplanatism negligible in accuracy of shift-adding T0 exposures. 
The T1 exposures need to be forward-regridded using the distortions as established in section 
6.12.2. The T1 regrids have a total exposure time T2. The astrometrical difference between sets 
of T2 added exposures should be a continuous polynomial. T2 shall be long enough that tip-tilt 
jitter can be integrated out over time, (see Appendix). T1 must be short enough that T0 
exposures can be shift-added: i.e., non-linear effects are negligible over T1, such as AO 
distortions due to guide star measurement errors. Combining the T1 exposures requires 
regridding due to telescope instabilities. Time scales of instabilities to be determined 
empirically and from telescope design model. 

Frequency/timing: can potentially be performed on every exposure, provided requirements are 
met. 

Feasibility: deemed feasible. Astrometric calibrations which do not involve detailed PSF fitting 
commonly achieve positional accuracies of 1/10th of a pixel. Inclusion of dedicated PSF fitting 
should improve this by an order of magnitude (see Section 4 of Astrometry report in Appendix 
for inventory of contributing effects and assessment of their error budgets).  

Note

6.11.4 Intra-epoch astrometry 

: Instrumentally calibrated images are raw images with calibration header information, not 
regridded images. Regridding is required only as a disposable step in the derivation of the total 
astrometric calibration parameter set. 

Objective: convert pixel-space positions to sky coordinates for sources in instrumentally 
calibrated images using reference sources in the FoV. Within time span of exposures the 
motion of science targets and reference sources is undetectable. 

Accuracy/Constraints: 10 microarcsec accuracy on sky coordinates relative to ensemble of 
reference sources. Any set of instrumentally calibrated images can be used. . See 6.12.3 for the 
basic single epoch astrometric calibration requirements. Distortions within epochs are expected 
to be low-order polynomials. Astrometric reference sources of any kind can be used. 

Frequency/timing: N/A 

Feasibility: feasible (see 6.12.3). 
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6.11.5 Inter-epoch astrometry 

Objective: 

• 

Astrometrically calibrate observations at different epochs. Motion of science targets 
and possibly reference sources is detectable. Two types of astrometric reference systems are 
foreseen. 

TYPE A

• 

: construct astrometric reference system from science objects (e.g., assume 
random stellar motions in stellar system or radial linear expansion of science objects). 

TYPE B: high-z galaxies (and their star clusters) in observations are available as 
astrometric reference system.  

Accuracy/Constraints: 10 microarcsec accuracy on sky coordinates relative to ensemble of 
reference sources. Any set of instrumentally calibrated images can be used. See sections 6.12.3 
and 6.12.4 for the basic single epoch astrometric calibration. Distortions between epochs are 
assumed to be low-order polynomials. 

Frequency/timing: any N/A 

Feasibility: 

6.11.6 Monitoring astrometric stability 

feasible (see section 6.12.3). When using high-z galaxies as astrometric reference 
points, integration times up to about 10 hours can be necessary (see Astrometry report in 
Appendix). 

Objective: observe astrometric standard fields as part of the calibration plan. They are the 
astrometric analogous of photometric standard fields. This monitors the end-to-end relative 
astrometric accuracy of the E-ELT+MAORY+MICADO system.  

Accuracy/Constraints: Definition of calibration fields with high density, non-crowded source 
population in all filters. The requirements on number density of the sources are as for the 
calibration mask. Sources should be high-z galaxies to have intrinsically constant astrometry.  

Frequency/timing: to be determined from experience during commissioning 

Feasibility: 

6.12 Regridding and coaddition 

feasible. 

Objective: resample images to a single uniform projection based on their astrometric 
calibrations and coadd them. 

Accuracy/Constraints:  <10microarcsec precision. 

Frequency/timing: potentially any image for which astrometric solution has been derived. 

Feasibility: feasible. The required mathematical resampling precision can be obtained by 
currently implemented approaches (e.g., Swarp) with straightforward adaptations. 
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7 REQUIREMENTS DATA REDUCTION SPECTROSCOPY 

The E-ELT+ MAORY system give MICADO’s spectroscopic capability immensely faint 
limiting magnitudes in combination with high spatial resolution.. In contrast to the 
astrometrically challenging image data reduction, MICADO’s spectroscopy uses long-slits 
which are a well-established set-up in current instruments. Thus, the data reduction of 
MICADO’s long-slit spectroscopy can be based to detail on reduction procedures for current 
day near-infrared spectrographs such as ISAAC and especially NACO. Therefore the top level 
requirements are only briefly summarized for spectroscopy  

The data reduction for long-slit spectroscopy must be able to perform:  

Sky-subtraction: The sky shall be determined from standard nodding or dedicated off-set sky 
positions and subsequently subtracted 

Bad pixel masking: Requirements are those described in section 6.4.  

Flat fielding:  Generate a flat field by combining spatial information from a set of twilight sky 
exposures with spectral information from a set of calibration lamp exposures. 

Combine, rectify and extract spectra: shift and combine 2D spectra, correct for spatial slit 
curvature before extracting 1D or 2D spectra.  

Wavelength calibration: produce a wavelength map (wavelength for every detector pixel) 
from an arc frame, or from a night sky exposure with sufficient signal in the night sky OH 
emission lines. The pipeline should also be able to shift an existing wavelength map by a 
small amount to match a night sky exposure. The bootstrapping ability is especially 
important for the K band, where the night sky lines cover only a small fraction of the 
observing band.  

Telluric line correction: correct science spectra for atmospheric emission-lines by scaling and 
subtracting observed telluric standard spectra. Sky conditions need to be similar for science 
target and telluric standard. 

Flux calibration: flux-calibrrate science spectra using spectral standards. Sky conditions  need 
to be similar for science target and telluric standard. 

 

8 DEVELOPMENT PLAN AND RISK ANALYSIS 

Development of MICADO imaging data reduction pipeline 

Partner NOVA includes its optical wide-field imaging expertise center OmegaCEN. The 
personnel has decades of expertise in this area. OmegaCEN has designed, developed and 
implemented the pipeline for ESO’s OmegaCAM at the VST. This pipeline has been in full 
operation since December 2006 and thanks to its generality been applied to a dozen other 
optical imagers. Stand-alone version of this pipeline has been delivered to ESO. The optimal 
development track depends on the eventual data reduction and processing framework. The 
current baseline assumption is: 

o Extending existing optical pipelines built by OmegaCEN to near-infrared imaging data 
reduction: many commonalities with optical data reduction in which case existing 



MICADO       
Consortium 

MICADO PHASE A TOP LEVEL DATA 
REDUCTION USER REQUIREMENTS 

Doc: E-TRE-MCD-561-0024 
Issue:  1.0                           
Date:   19.10.09                  
Page 23 of 24 

 

MICADO Consortium 

 

pipelines in Astro-WISE can serve as basis. For IR specific pipeline aspects, the 
MICADO image pipeline will be based on near-infrared image reduction pipelines 
such as ISAAC at the VLT and VIRCAM-VISTA. As described in previous sections, 
many steps in the data reduction are very similar to those of other multi-detector near-
infrared imagers.  

o Extending astrometric pipeline of Astro-WISE to reduction of AO for extremely high 
astrometric accuracy. Many steps in the astrometric calibration foreseen for MICADO 
are covered by existing astrometric calibration procedures, also in Astro-WISE. The 
following main steps in the astrometric calibration for MICADO are not covered by 
astrometric calibration procedures in Astro-WISE: 

 Mapping of focal plane and geometric distortions with an astrometric 
calibration mask: feasible as discussed in Section 6.11. 

 PSF fitting: not incorporated in Astro-WISE: can be based on or make use of 
existing expertise: e.g., PSFex, starfinder, DAOPHOT (see RD6). 

 INTER-EPOCH astrometric calibration TYPE A is not available in common 
astrometric pipelines. 

 

Development of MICADO spectral data reduction pipeline 

MICADO IR spectral pipeline shares many commonalities with existing IR spectral data 
reduction pipelines such as those for ISAAC and NACO. Since spectroscopic data volumes are 
an order of magnitude less than for imaging: it needs to be determined during PDR if it is more 
user-friendly and efficient to incorporate the spectral data reduction in the same infrastructure 
as the imaging data reduction or in an independent infrastructure. 

 

Development of MICADO data reduction infrastructure 

The development of the MICADO imaging data reduction infrastructure can be based on the 
experience gained from developing the Astro-WISE infrastructure developed by partner 
NOVA-OmegaCEN (Valentijn et al 2008). The system is scalable by design: being applied to 
data reduction of dozen optical imagers operating data in the 10s TB regime. The infrastructure 
is also being applied to LOFAR which has Petabyte data volumes. As used for Astro-WISE the 
approach of Component Based software engineering (CBSE) will be used for MICADO. This 
will also facilitate the interface to existing data reduction infrastructures if needed. 

 

Simulated data reduction 

E-ELT with its multi-conjugate adaptive optics brings especially the image data reduction to an 
unprecedented regime. Detailed simulated data and data reduction will therefore be crucial to 
test various approaches in this new regime. From pre-phase B on data simulations will be made 
and data reduction simulations will be performed. 
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9 APPENDIX: ASTROMETRY REPORT TRIPPE ETAL. 

Attached to this document is a paper entitled “High Accuracy Astrometry with MICADO at the 
European Extremely Large Telescope” by Trippe, Davies, Eisenhauer, Förster Schreiber, Fritz 
and Genzel. This work was carried out as part of the MICADO astrometry study, and the 
resulting paper has been submitted to MNRAS.  

 

---oooOOOooo--- 
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ABSTRACT
In this article we identify and discuss various statistical and systematic effects influencing the
astrometric accuracy achievable with MICADO, the near-infrared imaging camera proposed
for the 42-metre European Extremely Large Telescope (E-ELT). These effects are instrumen-
tal (e.g. geometric distortion), atmospheric (e.g. chromatic differential refraction), and astro-
nomical (reference source selection). We find that there are several phenomena having impact
on ∼100µas scales, meaning they can be substantially larger than the theoretical statistical
astrometric accuracy of an optical/NIR 42m-telescope. Depending on type, these effects need
to be controlled via dedicated instrumental design properties or via dedicated calibration pro-
cedures. We conclude that if this is done properly, astrometric accuracies of 40µas or better
– with 40µas/yr in proper motions corresponding to ≈20 km/s at 100 kpc distance – can be
achieved in one epoch of actual observations.

Key words: Telescope — Astrometry — Instrumentation: high angular resolution — Tech-
niques: high angular resolution

1 INTRODUCTION

The future optical/near-infrared European Extremely Large Tele-
scope (E-ELT; see, e.g., Gilmozzi & Spyromilio (2008)), which is
designed with a 42-metre aperture, will offer a substantial improve-
ment in angular resolution compared to existing facilities. At wave-
lengths λ = 2µm, diffraction-limited resolutions of Θ ' 10mas will
be achieved. In terms of angular resolution in the near infrared,
the E-ELT will outperform existing 8–10m-class telescopes like
the VLT or Keck by factors of ≈4–5 and the future James Webb
Space Telescope (JWST) by factors of ≈7. This increase in angu-
lar resolution should translate into a corresponding improvement in
astrometric accuracy.

In order to exploit the E-ELT’s resolution, a German-Dutch-
Italian-French consortium1 proposed the Multi-AO Imaging Cam-
era for Deep Observations (MICADO) in February 2008. As the
spatial resolution of any ground-based observatory is initially lim-
ited by the atmospheric seeing, MICADO will be equipped with a
multi-conjugate adaptive optics (MCAO) system for achieving the
diffraction limit of the 42m-telescope. This system uses three nat-
ural and six laser guide stars for correcting the atmospheric turbu-

? E-mail: trippe@iram.fr
1 The MICADO collaboration includes: MPE Garching, Germany; USM
Munich, Germany; MPIA Heidelberg, Germany; NOVA (a collaboration
of the universities of Leiden, Groningen, and ASTRON Dwingeloo), The
Netherlands; OAPD Padova (INAF), Italy; LESIA Paris, France

lence in a wide (> 2′) field of view (Diolaiti et al. (2008)). Images
will be recorded by an array of 4×4 near-infrared (NIR) HAWAII-
4RG detectors with 4096×4096 pixels each, covering a FOV of 53’.
The instrument is sensitive to the wavelength range 0.8 − 2.5µm,
thus covering the I, Y, J, H, K bands. For astrometric experiments
the use of the data analysis software Astro-WISE (Valentijn et al.
(2007)) is foreseen.

In order to achieve its science goals (see Sect. 2 for details),
MICADO needs to reach a stable (time scales of years) astromet-
ric accuracy of approximately 50µas. At present 8–10m class tele-
scopes, accuracies of ≈0.5% of a resolution element can be reached
regularly (e.g. Fritz et al. (2009)). Therefore from simple scaling
of results our goal a priori appears reasonable. However, at levels
of the order of 100µas there are several sources of statistical and
systematic errors which need to be taken into account carefully. In
this article we discuss those effects and analyse strategies to bypass
them. We conclude that reaching an astrometric accuracy of better
than 50µas is highly challenging in terms of instrument design and
data calibration but feasible.

MICADO’s astrometric performance should be of the same
magnitude as that of the future astrometry space mission GAIA
(e.g. Jordan (2008)). GAIA will achieve accuracies better than
≈50µas only for bright (V<15.5) targets and only at the end of
its mission. MICADO is expected to achieve this accuracy for tar-
gets with KAB < 26. Other space missions like SIM PlanetQuest
(e.g. Edberg et al. (2007)) or JASMINE (e.g. Gouda et al. (2007))

c© 2009 RAS



2 S. Trippe et al.

also aim specifically at bright targets in order to reach accuracies
of ≈10µas (at best).

For illustration purposes, Fig. 1 shows simulated observations
of the nuclear star cluster of the Milky Way using both present day
8-10m class telescopes and E-ELT/MICADO. Physical parameters
of the star cluster (stellar density profile, luminosity function) are
taken from Genzel et al. (2003). We discuss technical details of our
simulations in Sect. 4.1. These maps demonstrate the impressive
progress to be expected with MICADO.

Although this study is set up for the specific case of MICADO,
most of its results are valid in general and therefore of interest be-
yond the E-ELT community.

This paper is organised as follows. In Section 2, we discuss
the science cases identified for MICADO. In Section 3, we review
the concepts and techniques of accurate astrometry. In Section 4,
we identify and analyse sources of systematic errors one by one
and describe methods for minimizing those errors. We provide a
summary of our results and an overall error budget in Section 5 and
present our conclusions in Section 6.

2 SCIENCE CASES

As part of the instrument design study, the MICADO collaboration
has identified and analysed (Renzini et al. (2008), and references
therein) several science cases for which the high astrometric accu-
racy of E-ELT/MICADO is crucial and promises major discoveries.
We discuss them in the following one-by-one.

2.1 Galactic Centers

Located at a distance of ≈8 kpc, the nuclear region of the Milky
Way is the closest galactic nucleus, hosting the supermassive black
hole (M• ≈ 4 × 106 M�) Sgr A* (e.g. Gillessen et al. (2009)). It
is therefore a unique laboratory for exploring the regime of strong
gravity, accretion onto black holes, and the co-evolution of dense
star clusters and active galactic nuclei.

Present-day NIR instrumentation, e.g. VLT/NACO, provides
astrometric accuracies down to ≈0.3 mas and angular resolutions
down to ≈50 mas (e.g. Fritz et al. (2009)). This allowed to identify
several stars on Keplerian orbits around Sgr A* with orbital periods
down to ≈15 years and pericenter distances as small as ≈100 AU
(≈12 mas on sky; e.g. Gillessen et al. (2009)). It made possible to
study in detail the kinematics and the composition of the nuclear
star cluster in the gravitational potential of the central black hole.
With E-ELT/MICADO one can expect to achieve sensitivities that
are more than five magnitudes fainter than for VLT/NACO. Angu-
lar resolutions and astrometric accuracies should also improve by
factors of about five, meaning that proper motions of order 10µas/yr
(400 m/s) can be detected within few years of observations. Such
instrumental performance is necessary in order to adress several
new questions (e.g. Gillessen et al. (2009)):

• Identification of stars on closeby Keplerian orbits with periods
of few years.
• Measuring the prograde relativistic orbit precession and test-

ing other effects of general relativity.
• Probing possible retrograde orbit precession due to an ex-

tended mass component built from compact stellar remnants.
• Analyzing the various separate kinematic structures of the nu-

clear star cluster, and searching for new ones.
• Quantifying the binary star fraction in the nuclear cluster.

Figure 1. An illustration of the expected performance of the E-
ELT/MICADO system. These simulated maps show the central 1′′×1′′ (i.e.
8000AU×8000AU) of the nuclear star cluster of the Milky Way at 2.2µm.
Top panel: The target region as observed with present day 8-10m class tele-
scopes. The diffraction-limited resolution is ≈50mas. For comparison with
actual observations, see, e.g., Genzel et al. (2003), Ghez et al. (2005). Bot-
tom panel: The same field as seen by MICADO. The angular resolution is
≈10mas. The improvement in detail and depth is obvious.

With MICADO, this type of analysis can be extended to other
nearby galaxies. One obvious example is the core of M31 which
hosts a M• ≈ 1.4 × 108

� black hole. Similar to the case of the Milky
Way, M31’s nucleus shows several distinct stellar populations: a
triple nucleus and two nested star disks around the central black
hole have been identified (Bender et al. (2005)). Although M31 is
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more distant from earth by a factor ≈100 compared to the Galactic
center, the larger mass of its black hole (by a factor of ≈35) causes
stellar proper motions of about 6% compared to those in the nu-
clear cluster of the Milky Way. Therefore kinematic analyses ana-
loguous to the Galactic center experiment will require capabilities
as predicted for E-ELT/MICADO.

Another example is Centaurus A which hosts a M• ≈ 5 × 107
�

black hole (Neumayer et al. (2007)). Given its distance of ≈5 Mpc,
proper motions of ≈10µas/yr correspond to ≈200 km/s. Thus mea-
suring the motions of stars in the vicinity of the black hole is pos-
sible. Other galaxies might be interesting targets as well.

2.2 Intermediate Mass Black Holes

The expected high astrometric accuracy of MICADO opens a new
window in the search for and analysis of intermediate mass black
holes (IMBH), objects with masses of few thousand solar masses.
In the last years, the detection of those objects in the Arches clus-
ter (Portegies Zwart et al. (2006)), the star association GCIRS13
in the Galactic center (e.g. Maillard et al. (2004)), ω Cen (Noyola
et al. (2008)), and other locations has been claimed. Most of these
analyses are based on radial velocity dispersion profiles. This in-
troduces systematic ambiguities as anisotropic velocity dispersions
can mimick the presence of central point masses; this one can see
for example in the anisotropy term in the Jeans equation. Therefore
reliable (non)detections of IMBHs require measurements of stellar
proper motions (e.g. Anderson & van der Marel (2009)). Typical
velocity dispersions σ∗ of star clusters are of the order 10 km/s.
This corresponds to ≈50µas/yr at a distance of 40 kpc, meaning
that for most of the Galactic star clusters a proper motion analysis
is feasible with MICADO only. This allows

• contraining black hole masses in Galactic star clusters within
few years,
• probing the low-mass end of the M• − σ∗ relation,
• testing the dynamical evolution of star clusters.

2.3 Globular Clusters

As discussed above, the astrometric accuracy of MICADO should
allow measuring stellar proper motions of few km/s for most Galac-
tic globular clusters. Additionally, direct measurements of cluster
parallaxes become possible: for a distance of 40 kpc, the full paral-
lax displacement is 50µas, corresponding to MICADO’s predicted
astrometric accuracy. This allows adressing several topics:

• The spatial distribution of globular clusters.
• Cluster proper motions and their orbits around the Milky Way

(e.g. Bedin et al. (2003; 2006)).
• Internal cluster kinematics, including rotation.
• Separating cluster members from field stars, thus making anal-

yses of cluster star populations more reliable (see also Anderson et
al. (2006)).

2.4 Dark Matter In Dwarf Spheroidal Galaxies

Cold dark matter models predict high mass densities and cuspy
density profiles for the central regions of galaxy halos. In contrast,
warm dark matter models predict substantially lower central densi-
ties and constant density cores at small radii. The dwarf spheroidal
satellite galaxies of the Milky Way provide a unique laboratory to
test those models. Their proximity of ≈100 kpc makes it possible

to resolve individual stars and analyze their dynamics in the gravi-
tational potentials of their galaxies. Present day studies are usually
based on line-of-sight velocity dispersion profiles. However, there
are degeneracies of velocity dispersion anisotropies with mass den-
sity profiles. Therefore any conclusive analysis requires measuring
all three components of the velocity vectors of the tracer stars (e.g.
Strigari et al. (2007)).

This type of studies requires accurate proper motion measure-
ments with uncertainties of few km/s or better. MICADO will be
able to provide accuracies of ≈5 km/s within few years of observa-
tions for targets about 100 kpc away. This makes MICADO a deci-
sive tool for testing the validity of present-day dark matter models.

3 THE ASTROMETRY PROBLEM

Throughout this paper, we use the term “astrometry” the following
way. We discuss time-resolved relative positions, meaning the po-
sitions of a science target with respect to a set of reference sources.
Science target and reference sources are located in the field of view
(FOV) of the camera, i.e. they are recorded simultaneously in the
same science image.

Intra-epoch measurements cover timelines that are so short
that intrinsic motions of science targets or reference sources cannot
be detected. This can be a set of images taken within the same night
or a few adjacent nights. Any variations in measured positions are
due to measurement errors and can be used to determine the po-
sition accuracies. All information obtained from this data set (i.e.
images, coordinates, ...) can be combined, e.g. for improving the
signal-to-noise ratio (SNR).

Inter-epoch measurements cover timelines sufficient for de-
tecting source motions. Those data cannot be combined in a straight
forward manner. Intrinsic source motions and measurement errors
interfere and need to be disentangled, usually meaning that cal-
culating errors requires additional information. Given MICADO’s
proper motion accuracies of ≈50µas/yr or better (depending on the
duration of the experiments), corresponding to ≈10 km/s at 40 kpc
distance, intrinsic motion of Galactic stars is detected easily. There-
fore it will be necessary to use extragalactic sources, including high
redshift objects like QSOs, as references for some science cases.

If a set of science images is at hand, the general analysis recipe
is as follows.

Step 1. From each image n, one extracts the detector posi-
tions {Xn} of all sources of interest (science targets and reference
sources). Detector positions need to be measured with high accura-
cies of order few milli-pixels (mpix). Existing centroiding, source
profile fitting, and point spread function (PSF) correlation algo-
rithms provide such accuracies (e.g. Diolaiti et al. (2000); Berry
& Burnell (2000); Trippe (2008)).

Step 2. For each image n, the detector positions {Xn} need to
be converted into global astrometric coordinates {xn}. The reference
frame can be the detector coordinates of a selected zero-point im-
age or any more general astrometric coordinate system. Using the
detector positions of the reference sources {Xn

ref} and their astro-
metric positions {xn

ref}, one calculates a transformation

Tn : {Xn
ref} −→ {xn

ref} . (1)

Obtaining the positions {xn
ref} requires some prior knowledge on the

reference sources. One powerful approach is cross-calibration with
other datasets, maybe from other wavelength regimes. A nice ex-
ample is given by Reid et al. (2007). They use precise VLBI astrom-
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etry of SiO maser stars in order to define an astrometric reference
frame in K-band images of the Galactic center.

If the reference sources are known to be not moving (e.g. ex-
tragalactic objects), one can set {xn

ref} = {X0}; the index 0 indicates
the selected zero-point in time. The same can be done if the ref-
erence source ensemble is (or is defined as being) at rest in aver-
age, i.e. 〈{x0

ref}〉 = 〈{xn
ref}〉 (e.g. a sufficiently large set of stars in a

star cluster). In this case however, one will loose information on
a global motion (drift, rotation, contraction, etc.) of the combined
system “science target + reference sources”. In any case, the trans-
formation Tn is used to compute global astrometric coordinates for
the science targets like

{Xn} −→ Tn ({Xn}) = {xn} . (2)

Commonly, low-order (<5) 2-dimensional polynomial coordinate
transformations

x′ = a0 + a1 x + a2y + a3 x2 + a4y2 + a5 xy + ... (3)

y′ = b0 + b1 x + b2y + b3 x2 + b4y2 + b5 xy + ... (4)

are used. In case prior knowledge on the geometry of the required
transformation is available, one can use models with smaller num-
bers of free parameters (e.g. Montenbruck & Pfleger (1989); An-
derson et al. (2006); Trippe et al. (2008)).

The number of available reference sources governs the maxi-
mum order of coordinate transformations (see step 2). A 1st order
polynomial transform with six parameters requires three reference
sources, i.e. 2 × 3 = 6 coordinates. A 2nd-order transform (12 pa-
rameters) requires six reference sources, and so on. Throughout this
paper we assume that any two science images need to be connected
via full astrometric transformations. This means that we regard
more simple methods of data combination like stacking, simple-
shift-and-add etc. as non-astrometric and thus not usable for our
purpose.

In order to judge the astrometric accuracy achievable with a
system like MICADO, one has to distinguish statistical and sys-
tematic influences. The statistical measurement accuracy is given
by

σL =
λ

πD
1

S NR
= 284µas

(
λ

2.17µm

) (
5m
D

) (
100

S NR

)
(5)

Here λ is the wavelength, D the telescope aperture, and S NR the
signal-to-noise ratio (Lindegren (1978)). To give an example for
the case of the E-ELT: with λ = 2.2µm (K-band), D = 42m,
and S NR = 100, one obtains a statistical astrometric accuracy
σL = 34µas. From this we see that – in principle – astrometric
accuracies of ∼10µas can be obtained with the E-ELT. This means
that any source of additional, especially systematic error needs to
be compensated down to this level if one actually wants to fully
exploit the E-ELT’s capabilities.

4 ERROR SOURCES

In total, we have identified ten effects that might have the potential
to reduce the expected astrometric accuracy of MICADO substan-
tially. We will discuss these “Terrible Ten” in the following subsec-
tions. The first three phenomena we analyze are instrumental, the
next five are atmospheric, and the last two are astronomical.

Table 1. Strehl ratio estimates as obtained from preliminary simulations
(Liske 2008; M. Kissler-Patig priv. comm.). The λcenter are the central wave-
lengths of the filters.

Band I J H K

λcenter [µm] 0.900 1.215 1.654 2.179

Strehl ratio [%] 2 18 35 53

4.1 Sampling and Pixel Scales

The detector position of a point source can be computed only if the
source PSF is sufficiently sampled. If the pixel scale – expressed in
angular units per pixel – is too large (undersampling), position in-
formation is lost because there is no unique mathematical descrip-
tion for the PSF profile anymore. Especially, a PSF can then be
modelled by profiles with different centers of light (i.e. different
detector positions). This effect is known as the pixel phase error. It
can reach magnitudes of several tenths of a pixel, thus providing an
important boundary condition for the instrument design. A detailed
description of this phenomenon is provided by Anderson & King
(2000).

In order to identify the critical pixel scale of MICADO, we
first created artificial PSFs for each of the bands I, J, H, and K. We
modelled each PSF P(x) as a superposition of a 2-dimensional Airy
function A(x) and a 2D Moffat profile M(x) like

P(x) = aA(x) + (1 − a)M(x) . (6)

For each PSF, a stochastic optimization routine2 adjusted the pa-
rameter a ∈ [0, 1] such that the resulting PSF profile showed the
proper Strehl ratio. We took Strehl ratio estimates for MICADO
from preliminary E-ELT adaptive optics (AO) system simulations
(Liske (2008); M. Kissler-Patig priv. comm.), the values are shown
in Table 1.

For each of the four wavelength bands we examined pixel
scales from 1 to 7 mas/pix in steps of 0.1 mas/pix. In each con-
figuration, we placed the PSF at a random detector position and
re-binned it to the corresponding pixel scale. After this, we fit the
detector position with a 2D Gaussian light distribution. We iterated
this procedure 250 times for each configuration. Pixel phase errors
were the rms values of the distributions of the differences between
true and measured positions.

The results of our analysis are shown in Fig. 2. For clarity,
we restrict the diagram to the decisive pixel scale range from 2
to 4 mas/pix. For all wavelength bands the errors are smaller than
≈1µas for pixel scales below 3 mas/pix. Given that the filter bands
span a factor of 2.4 in wavelength and thus in λ/D, it might not
be obvious why the critical pixel scales we find are that similar
for all bands. This effect is caused by the differences in Strehl ra-
tios: whereas the diffraction limited profile width decreases with
decreasing wavelength, the Strehl ratio decreases, too, meaning
a stronger atmospheric blur. In our case, the two effects roughly
counterbalance each other; we actually find the smallest beam size
for the H band PSF due to its combination of high SNR (≈35%)
and small diffraction limit (λ/D ≈ 8.1 mas). This makes it possible
to quote a single critical pixel scale for all bands. We therefore con-
clude that for isolated point sources pixel scales up to 3 mas/pix can

2 Implemented in the MPE data processing software DPUSER developed
by Thomas Ott; see http://www.mpe.mpg.de/∼ott/
dpuser/history.html
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Figure 2. Pixel phase error vs. pixel scale for I, J, H, K bands for isolated
sources. Model PSFs are superpositions of Airy and Moffat profiles with
Strehl ratios as given in Table 1. For all bands, the errors are below ≈1µas
for pixel scales smaller than 3 mas/pix.

be used for MICADO without introducing noticable (≈1µas) pixel
phase errors. Therefore we use this scale as the standard value for
the MICADO design.

In case of crowding, the astrometric accuracy is additionally
limited by source overlap. For this reason the MICADO design
foresees a “small scale mode”. As the camera design is catoptric
and all mirrors are fixed, we use a pick-up arm to image a small (6”,
using one out of the 4×4 detectors) FOV with a reduced pixel scale
of 1.5 mas/pix. The reduced scale helps to better separate close by
sources and such reduce the misplacements of the source centroids.

In order to quantify this effect, we examined our two pixel
scales, 1.5 mas/pix and 3 mas/pix, for each of the bands H and
K, meaning four configurations in total. For each configuration we
simulated a crowded star field by placing PSFs at random positions.
We used the same model PSFs as for the case of isolated sources.
We applied a luminosity profile corresponding to the K-band lu-
minosity function of the Galactic bulge which is d log n/d log S ≈
−0.8 (Zoccali et al. (2003); n is the source number, S is the flux).
The dynamic range of the star sample was 10 magnitudes, i.e. a fac-
tor of 10,000 in flux. Source densities were ≈3000 stars per square
arcsecond. We also used these routines (with modified parameters)
to create the map shown in Fig. 1.

In each simulated map, we searched for stars and calculated
their detector positions using the PSF fitting routine StarFinder
(Diolaiti et al. (2000)). We derived median uncertainties vs. fluxes
from the distributions of the differences between true and measured
positions. As the absolute values of these errors are functions of
several parameters like fluxes, luminosity profiles, and source den-
sities, we converted our results into relative numbers, using the er-
rors obtained for the 3 mas/pix scales as references.

The outcome of our analysis is presented in Fig. 3. Reducing
the pixel scales from 3 mas/pix to 1.5 mas/pix improves the typical
accuracies by factors of ≈2–3. The effect is stronger in H than in
K band; this indicates that images with smaller beam sizes profit
more from a small pixel scale. For the brightest sources (more than
≈500 units) the differences between the pixel scales are (at least
in K band) not very pronounced any more because (a) the number
of very bright sources is small and (b) they outshine most of their
neighbours. We can thus conclude that for crowded fields the use

Figure 3. Relative median astrometric error vs. source flux for crowded
sources, separately for H and K bands. The results for the pixel scales
1.5 mas/pix are given as fractions of the uncertainties found for 3 mas/pix.
The horizontal dashed line indicates a ratio of 1. Error bars indicate the
68% uncertainty ranges. This analysis shows that reducing the pixel scale
improves the typical accuracies by factors ≈2–3.

of small pixel scales down to 1.5 mas/pix is indeed important for
keeping a high level of astrometric accuracy.

Combining all results for isolated and crowded sources, we
can conclude the following for the design and the operation of MI-
CADO:

• For sufficiently isolated target sources, pixel scales smaller
than or equal 3 mas/pix are free of noticable (≈1µas) systematic
uncertainties and suited for accurate astrometry. This scale is there-
fore going to be the standard pixel scale for MICADO.
• For the special case of crowded sources, smaller pixel scales

down to 1 mas/pix can substantially (factors ≈2) reduce the as-
trometric errors introduced by source overlap. We therefore im-
plemented a “small-scale mode” with a reduced pixel scale of
1.5 mas/pix into the MICADO design. This mode will be used to
map very crowded regions.

4.2 Instrumental Distortion

The geometric distortion of an optical system can seriously limit
its astrometric accuracy. In the following, we discuss non-linear
distortions. Linear terms like shifts, rotations, scalings, or shear,
are absorbed by 1st (or higher) order coordinate transforms (see
Sect. 3). In case of non-linear distortion, the effective pixel scale
is a function of detector position (e.g. Greason et al. (1994), and
references therein).

For MICADO, the amount of distortion to be expected (mean-
ing the difference between imaged and theoretical image positions)
is of the order of few per cent. The largest numbers, about 5%, we
find for the case of an Offner design for the camera. Although other
optical designs might have the potential to reduce the amount of
distortion down to ≈0.3% (Dierickx (2008)), it cannot be neglected.
Across a FOV of 1′, a distortion of 0.3% corresponds to a misplace-
ment of 0.18′′. For comparison: an astrometric accuracy of ≈50µas
across the same FOV corresponds to a relative error of less than
10−6. Such low uncertainties cannot be achieved by design. In or-
der to reach the desired astrometric accuracies, the distortion must
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be compensated by dedicated calibration schemes – regardless of
its amplitude.

Another effect to be considered is imperfect fabrication of the
detectors. The HAWAII-4RG detectors to be used for MICADO are
designed with pixels sizes of 15µm. The position accuracy of these
pixels in the detector grid is ≈10nm; for a pixel scale of 3 mas/pix
this corresponds to an astrometric uncertainty of ≈ 2µas (Richard
Blank3 priv. comm), i.e. is hardly noticable. However, any distor-
tion calibration scheme must provide the ability to catch potential
inaccuracies of the detectors (see also Anderson (2002) for the case
of HST/WFC).

Depending on the complexity of the distortion, two methods
for its description are possible. Analytic descriptions make use of
analytic parametrizations analogous to the coordinate transforms
discussed in Sect. 3. Most commonly, 2D polynomials up to about
5th order are used as distortion models (e.g. Greason et al. (1994),
and references therein). This approach allows covering all effects
up to a selected order without prior knowledge on the geometry of
the problem. The disadvantage of this method is the large number
of model parameters to be calculated. A recent example for this
approach is the analysis of the nuclear star cluster of the Milky Way
by Ghez et al. (2008) and Lu et al. (2009). They use a polynomial
model to correct the geometric distortion of the NIRC and NIRC2
cameras at the W.M. Keck Observatory.

If a physical model for the distortion is at hand, a correspond-
ing model can be substantially simpler. A recent example for this
approach is the analysis of the nuclear star cluster of the Milky Way
by Trippe et al. (2008) and Gillessen et al. ((2009)). They use the
3rd-order model

r = r′(1 − βr′2) (7)

with

r = x − xC and r′ = x′ − xC

(e.g. Jähne (2005))4 in order to correct the distortion of the imager
NAOS/CONICA at the VLT. Here x and x′ are the true and dis-
torted image coordinates respectively, β is a parameter describing
the strength of the grid curvature, and xC ≡ (xC , yC) is the zero
point of the distortion on the detector. This approach has the obvi-
ous advantage that it requires only three parameters (β, xC , yC) for
a 3rd-order distortion model compared to 20 for the case of a full
polynomial solution. The most important disadvantage is the need
for accurate a priori knowledge of the distortion geometry.

In cases where analytic solutions are not feasible or not ac-
curate enough, empiric descriptions might be used instead or in
addition. This means that the information of interest is stored in
look-up tables. Those tables usually have the dimensions of the de-
tector(s) and give the amount of distortion (or correction) for each
pixel (separately for x, y). This approach is necessary if significant
high-frequency distortion – meaning that the spatial scales of the
signal are small compared to the detector size – is present. For
the specific case of MICADO, the gaps between the detectors will
introduce discontinuities into any astrometric solution. This effect
could be caught by using lookup tables.

In a detailed analysis of the WFC instrument aboard the Hub-
ble Space Telescope, Anderson (2002) uses a combined “polyno-

3 Teledyne Imaging Sensors, Camarillo, USA
4 See also the electronic manual of the public Gemini North Galactic Cen-
ter Demonstration Science Data Set for another application on Galactic
Center imaging data.

mial model plus lookup-table” ansatz to model the distortion of the
camera. He achieves residuals smaller than 0.01 pixels with this
method. For the case of MICADO, this would mean residual errors
below ≈30µas which is an amount acceptable for our purpose.

There are several methods to extract the distortion parameters.
On-sky methods make use of dedicated observations of astronom-
ical targets; usually, star clusters are used (e.g., Anderson (2002)).
If the true (astrometric) coordinates of the sources in the target field
are known, one can derive the distortion parameters by comparing
true and observed (detector) positions. If the true source positions
are not known, one can observe the target field many times with
slightly different telescope pointings. In this case, one compares
the pairwise distances of objects that are present in two or more
images. Modulations in these distances as function of detector po-
sition are equivalent to (non-linear) distortion.

By construction, on-sky methods are sensitive to distortions
introduced by the atmosphere. Given the high accuracies we seek,
those methods are not practicable (at least stand-alone) for the case
of MICADO but will be a secondary approach.

In-lab methods characterize the instrument with dedicated
measurements in the laboratory or at the telescope. One example
is the “north-south test” used for the spectro-imager SINFONI at
the VLT (e.g. Abuter et al. (2006)). These methods use devices that
illuminate the detectors with well-defined images or light patterns.
Comparing the theoretical with the observed images allows for a
description of the distortion.

Given that in our acuracy regime the atmosphere can severely
limit the quality of on-sky calibration images (see Sect. 4.4 – 4.8
for details), we assume that we need to implement an internal cal-
ibration device into MICADO. For this purpose, we examined the
use of a calibration mask located in the focal plane of the imager.
Such a mask could be a regular pattern of holes in an intransparent
material. However, the following calculation shows that this is ac-
tually challenging. With MICADO, we want to observe a FOV with
extension x = 1′ with an accuracy δx = 10µas, meaning a relative
accuracy of

δx/x ≈ 1.7 × 10−7 .

The width of MICADO’s focal plane will be approximately l =

0.25m. This scales to a positioning accuracy for any reference lo-
cated in the focal plane of

δl = l × δx/x ≈ 4.2 × 10−8m .

As we see here, the positions of the holes in our calibration mask
need be known with accuracies of about 40nm (the hole diame-
ters would be ≈30µm corresponding to diffraction-limited point
sources). This result does not mean that the fabrication process
needs to be accurate at this level. Instead, it is sufficient to map
the hole positions with accuracies of ≈40nm after the making of
the mask. State-of-the-art photolithographic techniques provide the
required production and mapping accuracies at standard tempera-
tures (≈300K). With this approach, the calibration mask would be
a transparent quartz plate with a chrome cover into which the holes
are etched. Although such a system is thermally very stable, the im-
pact of possible non-linear thermal deformation needs to be inves-
tigated via dedicated laboratory experiments (B. Lorenz5, D. Rose6

priv. comm.). We consider the calibration mask approach to be the

5 Center for NanoSciences, Ludwig Maximilians University, Munich, Ger-
many
6 Rose Fotomasken, Bergisch Gladbach, Germany
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easiest one in terms of telescope and instrument design. We have
not yet investigated in detail more “exotic” ideas, e.g. illuminating
the detectors with a well-defined diffraction pattern or spectrum.

As we see from the discussion in this section, it is crucial to
gather the maximum amount of information on the instrumental
distortion of MICADO. We therefore conclude that the following
steps are necessary:

• Estimating amount and geometrical structure of the distortion
theoretically from the optics design.
• Careful mapping of the camera in the lab and at the telescope.

Implementation of an internal calibration device, e.g. a calibration
mask.
• Testing the system on-telescope for any evolution of the dis-

tortion. Evolution parameters can be time (aging effects), telescope
orientation (gravitational flexure), etc.
• Additional regular dedicated on-sky calibration observations

of sufficient astronomical targets, e.g. star clusters, as secondary
tests.

4.3 Telescope Instabilities

Instabilities of the telescope system have the potential to affect as-
trometric experiments. For the present design of the E-ELT one ex-
pects relative intra-night plate scale variations of ≈0.1% (Gonzalez
(2008)). Across a FOV of 1’, this corresponds to position variations
of order 60 mas. Another effect are adapter-rotator instabilities that
can introduce systematic frame-to-frame rotation. Those rotations
introduce position misplacements of the same order of magnitude
(see, e.g., Trippe et al. (2008) for the case of VLT/NACO).

Fortunately, those effects – shifts, global scalings, rotations –
are linear in geometry. Therefore they can be controlled via coordi-
nate transforms of 1st or higher order without additional calibration
steps. This statement does not hold however for gravitational flex-
ure effects that introduce a time-variable non-linear instrumental
distortion. This phenomenon is covered by our discussion of in-
strumental distortion in the previous subsection.

4.4 Achromatic Differential Atmospheric Refraction

Any ground-based position measurement is affected by atmo-
spheric refraction. As we discuss relative position measurements
of sources located in our FOV, we have to take into account any
relative or differential atmospheric refraction. In this case, we have
to discriminate achromatic and chromatic effects.

Achromatic differential refraction is caused by the slight dif-
ference in zenith angles ζ of two (or more) sources located within
the same FOV. For each source, the atmospheric refraction leads to
a deviation between physical and observed zenith angles. For two
sources at slightly different zenith angles, those deviations will be
different. Therefore the observed distance between the two targets
deviates from the physical one and needs to be corrected. The re-
quired correction ∆x of the distance between two sources 0 and 1
is approximately given by the relation

∆x = (1 + tan2 ζ1)(A + 3B tan2 ζ1)∆ζ . (8)

Here ζ1 is the zenith angle of source 1, ∆ζ is the observed zenith
separation, A and B are constants. Detailed calculations (Gubler
& Tytler (1998)) show that the linear terms of this effect are of
the order of several milli-arcsec, whereas the quadratic terms are
as small as ≈1µas. For example: with ζ1 = 45◦ and ∆ζ = 30′′, the
correction amounts to ≈15 mas in the first-order terms and ≈2µas in

second order. Fortunately, these terms can be absorbed by quadratic
coordinate transforms (see Sect. 3). From this we conclude that we
can neglect achromatic differential atmospheric refraction for the
purpose of our analysis.

4.5 Chromatic Differential Atmospheric Refraction

Chromatic differential refraction (CDR) or atmospheric dispersion
is a more severe problem for accurate astrometry than the achro-
matic case. As the refractive index n of the atmosphere is a function
of wavelength, the observed angular distance between two sources
is a function of the (relative) source colours. For a given true zenith
distance ζt, the deviation from the apparent zenith distance ζa (in
radians) follows the approximative relation

ζt − ζa ' R tan ζt =

(
n2 − 1

2n

)
tan ζt (9)

Here R is the refraction constant. For standard conditions the re-
fractive index is given by

(n − 1) × 106 = 64.328 +
29498.1 × 10−6

146 × 10−6 − s2 +
255.4 × 10−6

41 × 10−6 − s2 (10)

with s = λ−1, λ being the vacuum wavelength in nm (e.g. Cox
(2000)). Of course, this has impact on relative astrometry only if
the two sources have different colours. For observations of two stars
with broadband JHK filters, astrometric errors are of the order of
1 mas (within a wide range, depending on zenith angles, angular
distances, and source colours). We therefore need to correct the
CDR in order to meet our desired accuracies.

In the following, we investigate the use of an atmospheric dis-
persion corrector (ADC) placed into the optical path. This ADC is a
pair of ZnSe/ZnS biprisms which refracts – for a given zenith angle
– the infalling radiation such that the CDR is compensated. In order
to use this element for a range of zenith angles, the biprisms can be
rotated around the optical axis relative to each other; this controls
the strength of refraction. Such a system was built and operated
successfully for the SHARP II+ NIR camera system (Eisenhauer
(1998)). The required optical components are available in the spa-
tial dimensions needed for MICADO (S. Koebele priv. comm.). In
order to decide on the design strategy, we explored three options in
detail:

(i) The use of one non-tuneable ADC optimized for simultane-
ous correction of the full wavelength band range J, H, Ks (λ =

1.1...2.35µm).
(ii) One ADC covering the entire band range that can be tuned

in wavelength to bands J, H, and Ks, respectively.
(iii) Three ADCs, one for each of the three bands J, H, and Ks.

For each option (1, 2, 3), we computed residual dispersions (disper-
sions left after correction) vs. wavelength for each of the bands J,
H, and Ks. All calculations used zenith angles ζ = 45◦. Our compu-
tations made use of numerical optimization routines implemented
into the software package Mathematica7. The results for J band are
given in Fig. 4. Whereas option 1 results in a very asymmetric curve
of correction, options 2 and 3 are very similar in shape and highly
symmetric. As we see here, one can reduce the residuals by using
an ADC specifically designed for the wavelength band analyzed
(option 3) by factors of about ten compared to a tunable ADC (op-
tion 2). However, the impact on astrometry is actually given by the

7 Wolfram Research, Inc., Champaign, IL, USA
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Figure 4. Residual dispersion vs. wavelength in J band after correction with
an ADC assuming ζ = 45◦. Top panel: Using one non-tunable ADC for the
entire JHK band range. Center panel: Using one tunable ADC for the entire
JHK band range tuned to J band. Bottom panel: Using an ADC specifi-
cally designed for optimum correction in J band. Please note the changes
in scales. The non-tunable ADC results in a very asymmetric correction
curve. The other two curves are offset by about ten times their amplitudes
from each other, but are very symmetric in their shapes.

relative displacement of two sources with different colours. This
means that the residual astrometric error is mainly controlled by
the symmetry of the curves, not by their amplitudes or absolute
levels. We may therefore expect that options 2 and 3 result in very
similar astrometric accuracies.

For a quantitative description of the residual astrometric errors
we analyzed two hypothetical science cases. We examined

• an observation of two black bodies of very different tempera-

Table 2. Relative zenith angle shifts computed for the options, science
cases, and filter bands discussed in the text. All numbers are in µas.

Band J H Ks

Option 1:
Case A 730 73 196
Case B 642 112 250

Option 2:
Case A 9 9 6
Case B 35 23 21

Option 3:
Case A 9 9 2
Case B 35 22 11

tures (T1 =3,000 K, T2 =30,000 K), crudely corresponding to M5
and B0 main sequence stars, respectively (“case A”),
• the case of two black bodies at T =5,800 K (e.g. sun-like stars)

affected by very different extinctions of AV = 25 and AV = 35,
respectively (“case B”). For this case, we used the extinction law
by Draine (1989) as taken from Lutz et al. (1996).

For each option, science case, and filter band we computed
relative shifts in zenith angle between the sources 1 and 2 via

∆ζ2−1 =

∫
∆ζ(λ)S λdλ∫

S λdλ
|2 −

∫
∆ζ(λ)S λdλ∫

S λdλ
|1 . (11)

We present the results of our analysis in Table 2. As we see here,
using a non-tuneable ADC (option 1) for the entire JHK band range
leaves us with errors of roughly ≈100µas in H band which contains
the center of correction. When going to Ks and J bands, the resid-
uals increase to ≈200µas and ≈700µas, respectively. All numbers
exceed any acceptable value by factors of about ten or more. This
clearly rules out option 1.

Using a tuneable ADC (option 2) or three ADCs optimized
for the three bands (option 3) reduces the residual zenith angle dis-
placements to ≈10µas. This result complies with our requirements
and shows that our approach can indeed achieve the necessary ac-
curacies for realistic science cases. As expected from Eqs. 9 and 10,
the errors increase with increasing frequency. Therefore one should
avoid observations at very short (shorter than J) wavelengths. Ad-
ditionally, one should consider the use of narrow-band filters in
case of (a) observations at short wavelengths or (b) extreme rela-
tive source colours.

Another calibration step one should consider is an a posteriori
correction. As we discuss above, the impact of CDR on astromet-
ric solutions can be quantified analytically if the relative source
colours are known. However, this requires careful monitoring of
the atmosphere (see, e.g., Helminiak (2009)).

From our analysis of chromatic differential atmospheric re-
fraction, we conclude the following:

• CDR distorts astrometric solutions by up to few mas depend-
ing on source colours. We need to implement a dedicated correc-
tion.
• Using a tuneable ZnS/ZnSe atmospheric dispersion corrector

reduces the astrometric signal caused by CDR to ≈10µas in JHK
bands asuming realistic science cases. We therefore highly recom-
mend to implement such a device into MICADO.
• In case of extreme relative source colours or observations at

short (shorter than J-band) wavelengths, one should consider the
use of narrowband filters additional to an ADC.
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• If the source colours and the atmospheric conditions (temper-
atures, pressures, humidities) are known with sufficient accuracies,
one might additionally apply an analytic a posteriori correction of
astrometric data.

4.6 Guide Star Measurement Errors

MICADO’s MCAO system is designed to make use of three natu-
ral guide stars that are located (at a priori arbitrary positions) in the
field of view. Additionally, the use of six laser guide stars is fore-
seen. The stars are observed simultaneously as references for cor-
recting the wavefront deformation imposed on astronomical signals
by the atmosphere. The natural guide stars are used for correcting
low-order effects, whereas the laser guide stars correct high-order
distortions. The LGS high-order correction does not make use of
the guide star positons.

This is different for the NGS low-order correction. This cali-
bration step requires knowledge of the relative guide star positions.
The guide star measurements will have finite errors due to atmo-
spheric fluctuations that introduce a “position wander”. Uncertain-
ties in the measured guide star position will introduce time-variable
distortion into the AO corrected FOV. For N stars, one may expect
distortions up to order N−1, i.e. up to 2nd order for the case of
three natural guide stars. These distortions will differ from image
to image. Therefore it is necessary to combine images with full co-
ordinate transform of minimum order two. If this is done, the effect
will be compensated completely.

4.7 Differential Tilt Jitter

The light from a science target and the light from an adaptive op-
tics system reference source travel through different columns of at-
mospheric turbulence. An AO system applies a tip-tilt correction to
the signal received from the AO reference source. This correction is
slightly different for other positions in the field of view. Therefore,
any two objects in the observed field suffer from differential tilt jit-
ter: a random, achromatic, anisotropic fluctuation of the observed
angular distance of the two sources (e.g., Britton (2006); Cameron
et al. (2009)). In first order, the rms of this fluctuation follows the
relation

σT J ∝ θ × D−7/6 ×
(
τ

t

)1/2
. (12)

Here θ is the angular distance between the sources, D is the telecope
aperture, τ is the aperture wind crossing time (approximately: D
divided by wind speed), and t is the integration time. Tilt jitter is an
anisotropic effect with

σ‖ =
√

3σ⊥ ≈ 1.732σ⊥ (13)

where σ‖, σ⊥ denote the tilt jitter rms parallel and perpendicular to
the line connecting the two sources, respectively.

In Fig. 5 we give an example for a tilt jitter signal observed
in images taken with an 8-m-class telescope. This result is from
the work by Fritz (2009) who analyzed diffraction-limited VLT im-
ages of the nuclear cluster of the Milky Way. For pairs of stars, he
computed the uncertainties of the measured distances parallel and
perpendicular to the lines conecting the two stars. Fig. 5 shows the
uncertainty as function of star angular distance. By means of linear
fits one finds a relation σ‖/σ⊥ = 1.91 ± 0.22, i.e.

√
3 within errors

– as expected fom Eq. 13. From the line slopes and the known in-
tegration times one can estimate an aperture wind crossing time of
τ ≈ 0.6s. For details refer to Fritz (2009) and Fritz et al. (2009).

Figure 5. A differential tilt jitter signal as observed in VLT images. This
diagram shows the error on the measured distance between two stars σ as
a function of star angular distance θ. Errors are calculated parallel (‖) and
perpendicular (⊥) to the line connecting the two stars on sky. Points with
errorbars are data, continuous lines indicate the best fitting linear models.
From the line slopes one finds σ‖/σ⊥ = 1.91 ± 0.22, i.e.

√
3 within errors

as expected fom Eq. 13. This result is taken from Fritz (2009).

The impact of this effect on astrometry can be substantial. To
give a reference: based on observations with the Hale 200 inch
telescope, Cameron et al. (2009) find astrometric uncertainties of
≈75 mas for D = 5m, θ = 60′′, and t = τ = 0.2s (i.e. τ/t = 1).
For a realistic intra-epoch E-ELT observation with D = 42m and
t = 100τ ≈ 100s (i.e. τ/t = 0.01), this scales to σT J ≈600µas. Av-
eraging out this error to reasonable scales (less than 50µas) would
take about four hours. This imposes severe constraints on any as-
trometric observation.

The calculation given above is strictly valid only for single-
conjugate AO (SCAO) systems, i.e. AO systems using one ref-
erence source. However, MICADO is designed to use an MCAO
system with three natural guide stars initially. The use of multiple
guide star should reduce the tilt jitter error substantially. Ellerbroek
(2007) finds that for a 30m telescope and the case of three guide
stars arranged in an equilateral triangle the error is reduced by a
factor ≈6 compared to the SCAO case. Scaling the results by Eller-
broek (2007) to the case of the E-ELT, one finds

σT J ≈ 430 × t−1/2 µas (14)

with t being the integration time in seconds and θ = 60′′. This
means that accuracies of ≈10µas can be achieved within integration
times of about 30 minutes.

A helpful property of tilt jitter is the fact that it is random in
time, but correlated in space. This is also reported by Fritz (2009)
who finds that already using linear coordinate transforms between
images reduces the error by a factor ≈2. According to Cameron
et al. (2009), the use of coordinate reference frames based on
weighted pairwise distances between a target source and several
reference sources is able to catch the tilt jitter error. This approach
is similar to the concept of kriging (e.g. Clark & Harper (2000)).
It requires some tens of astrometric reference points in the FOV in
order to obtain a sufficient number of pairwise baselines. Addition-
ally, it requires any intra-epoch dataset to consist of some tens of
individual exposures instead of few long-term integrations. This is
necessary in order to estimate the uncertainty (and thus the weight)
of each pairwise source distance from its histogram. If this scheme
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Figure 6. Difference image of two simulated MAORY K-band PSFs located
70” away from each other at opposite sides of the center of AO correction.
This image covers a field of ≈ 7.5′′ × 6′′. The difference map shows a
complicated, highly symmetric pattern.

is applied, the error can be reduced to ≈10µas within few minutes
of integration.

From our discussion on differential tilt jitter we conclude for
MICADO:

• Differential tilt jitter can introduce errors of order ≈100µas
into typical E-ELT/MICADO observations. This effect is not a chal-
lenge for the instrument design but for the planning of observations
and data calibration.
• The tilt jitter error integrates out with time as ∝ t−1/2. For the

E-ELT, reducing the error to order of ≈10µas, integration times of
at least ≈30 min per intra-epoch dataset will be necessary.
• The tilt jitter error can be calibrated out (down to ≈10µas) by

using dedicated astrometric reference frames and transforms. This
requires (a) some tens of reference sources in the FOV and (b) some
tens of individual exposures per intra-epoch dataset.

4.8 Anisoplanatism

All existing AO systems suffer from anisoplanatism, meaning that
the shape of a PSF is a function of its position in the field of view.
Usually, this spatial variability is described by the relation

P(θ) = P(0) ∗ K(θ) (15)

(Fusco et al. (2000); Steinbring et al. (2002; 2005); Cresci et al.
(2005)). Here θ is the angular distance from the center of AO cor-
rection, P(0) [P(θ)] is the PSF at the center of correction [at dis-
tance θ], and K(θ) is a kernel describing the PSF variation; ∗ de-
notes convolution.

If K(θ) were asymmetric, then the center of light of the PSF
– and thus the detector position – would be a function of θ. This
would introduce a systematic distortion of astrometric solutions
that has to be calibrated out.

For existing SCAO systems, K(θ) is known to be symmetric.
It can be approximated analytically as an elliptical Gaussian pro-
file (e.g. Steinbring et al. (2005)). In this case, the most important

Figure 7. Astrometric errors introduced by MCAO anisoplanatism in H (top
panel) and K (bottom panel) bands. Errors are centroid shifts (with respect
to the case of perfectly symmetric light distributions) of the difference im-
ages between pairs of simulated PSFs located at different locations in the
MAORY FOV. The histograms have cutoffs at ≈7µas in H band and at≈8µas
in K band.

impact of anisoplanatism is a systematic degradation of the PSF’s
Strehl ratio S like

S (θ) = S 0 exp[−(θ/θN)5/3] (16)

assuming a perfect AO correction. Here S 0 is the Strehl ratio at the
center of AO correction, the parameter θN is the anisopanatic an-
gle. This effect reduces the SNR of a source and thus the statistical
astrometric accuracy, but a priori does not introduce a systematic
error.

For the case of MCAO systems with multiple centers of cor-
rection the problem is less well understood. In order to estimate
the astrometric error introduced by anisoplanatism, we made use
of preliminary simulations of multi-guide-star MAORY PSFs in H
and K bands8. The simulation data provide a grid of 217 PSFs lo-
cated at distances between 0” and 80” from the center of correc-
tion. The simulations assume a seeing of 0.6”. PSFs are sampled
with pixel scales equal to λ/2D, corresponding to 4.05 mas/pix and
5.30 mas/pix for H and K bands, respectively.

8 Made available by the MAORY consortium at
http://www.bo.astro.it/∼maory/Maory/
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By construction, each PSF is centered accurately at the cen-
tral pixel of a 512×512 pixel grid. As discussed above, we need to
estimate the relative position error introduced by anisoplanatism.
For this we computed for each pair of PSFs a difference map by
subtracting one PSF image from the other. In Fig. 6 we show the
difference image for the case of two PSFs located 70” away from
each other at positions (−60′′, 0′′) and (+10′′, 0′′) with the center of
AO correction located at (0, 0). Clearly, the map shows a compli-
cated, highly symmetric light distribution. From the high degree of
symmetry one can already suspect qualitatively that the impact of
MCAO anisoplanatism on the astrometry is small.

In order to quantify this statement, we calculated for each dif-
ference map the centroid

xcentroid =

∑
i xi · Ii∑

i Ii
(17)

of the light distribution. Here x is an arbitrary coordinate, xi and
Ii are position and flux assigned to the i-th pixel. The summation
is performed over all map pixels (e.g. Berry & Burnell (2000)). As
we had 217 PSF images at hand, this procedure resulted in 23436
measurements. Centroid positions different from the center of the
pixel grid correspond to position shifts of one PSF with respect to
the other caused by asymmetries in the anisoplanatism kernel.

We summarize our results in Fig. 7. The histograms of the po-
sition shifts show quite sharp cutoffs at ≈7µas in H band and at
≈8µas in K band. We do not find a significant correlation of posi-
tion errors with distance from the center of correction or any other
systematic relation.

We conclude that MCAO anisoplanatism probably introduces
very small but noticable uncertainties into astrometry. Deepending
on wavelength band we find errors (upper ends of histograms) up to
≈8µas. As the anisoplanatism effect is not (or very weakly) corre-
lated with PSF positions in the FOV, it can probably not be caught
by coordinate transforms or any other systematic correction but has
to be included into the error budget.

4.9 High-z Galaxies As Reference Sources

Throughout this article we discuss relative astrometry, meaning
measuring relative source positions. So far we implicitly assumed
the reference sources to be point sources, especially stars. How-
ever, in some cases the use of reference points other than stars will
be necessary:

• The number of stars located in the FOV can be too small. As
discussed in Sect. 3, the number of reference sources is a func-
tion of the order of the coordinate transform used. For example, in
case of a 2nd-order transform, the minimum number is six. Using
a larger number than the theoretical minimum is useful to average
out statistical position errors that could propagate into the trans-
formation. Additionally, systematic effects like instrumental distor-
tion (Sect. 4.2) and differential tilt jitter (Sect. 4.7) require large
numbers of reference points for calibration purposes. Deep fields
at moderate galactic latitudes (|b| ≈ 50◦) include only a few to a
few tens KAB <23 stars/arcmin (see e.g. Förster Schreiber et al.
(2006); Wuyts et al. (2008)). This number is probably too small for
astrometric MICADO observations.
• The science case might require an extragalactic reference

frame, thus excluding Galactic stars. For example, several groups
(e.g. Bedin et al. (2003; 2006); Kalirai et al. (2004)) use samples of
background galaxies as reference in order to measure the absolute

motion of globular clusters. Other science cases may need similar
approaches (see Sect. 2).

In order to investigate the use of galaxies as references, we
analyzed two simulated MICADO deep field K-band images as-
trometrically. We simulated galaxies following realistic distribu-
tions of K-band magnitude as function of redshift z taken from the
Chandra Deep Field South FIREWORKS (“field A”; Wuyts et al.
(2008)) and FIRES Hubble Deep Field South (“field B”; Labbé et
al. (2003)) catalogs. All objects in the fields are built using four
main ingredients:

• Smooth elliptical and disk galaxy light distributions with real-
istic surface number densities, sizes, and K-z distributions. The K-z
distributions were obtained by drawing at random galaxies from
the two source catalogues above, scaling the numbers by the ratio
of the MICADO FOV and the respective survey areas. A fixed mix
of ellipticals and disks was adopted (40%/60%), and effective radii
were assigned at random so as to match approximately the size dis-
tributions of Franx et al. (2008). Uniform distributions are assumed
for the axis ratios (with minimum of 0.3 for ellipticals and 0.1 for
disks) and for the position angles.
• Bulges (for disk galaxies) with de Vaucouleurs luminosity

profiles adopted for simplicity. Bulge properties are poorly con-
strained at high redshift; our assumptions were guided by results
from Elmegreen et al. ((2009), and references therein; see also Gen-
zel et al. (2008)). We assumed uniform distribution of axis ratios
between 0.7 and 1, position angles fixed at those of the host disks,
effective radii inversely proportional to 1+z and such that re = 2kpc
at z = 0, and a random distribution of bulge-to-total light ratios be-
tween 0 and 0.5.
• Clumps (for disk galaxies) with realistic numbers per disk,

typical light fractions, characteristic sizes and dependence on red-
shift, and radial distribution across the disks so as to roughly
match observed properties at z ≈1–2.5 (e.g., Genzel et al. (2008);
Elmegreen et al. (2009) and references therein) and their lack at
z ≈ 0. Of order 1–10 clumps per disk were simulated, with Gaus-
sian light profiles (again for simplicity), a narrow distribution of
FWHMs varying as (1 + z) such that FWHM = 1 kpc at z = 2.5,
light fractions of a few percent typically, an exponential distribu-
tion of radial positions with scale-length five times that of the host
disk, random position angles and axis ratios between 0.7 and 1.
• Unresolved star clusters (for all galaxies). This is the ingre-

dient which is least constrained at high redshift, as current instru-
ments lack the resolution and point-source sensitivity to detect indi-
vidual clusters if such exist at high z. To define their properties, we
assumed superpositions of five different populations of point-like
sources with a range of (Gaussian) magnitude and radial distribu-
tions. The brightest population contains the fewest clusters, with
the most centrally concentrated distributions. The brightest cluster
in each galaxy contributes 0.1% of the total light. These assump-
tions roughly reproduce those of super star clusters and globular
clusters in local galaxies, and unresolved sources in local analogs
of z 3 Lyman-break galaxies (Overzier et al. (2008)).

For each field image we created three realizations corresponding to
E-ELT/MICADO integration times of 1, 4, and 10 hours, respec-
tively, by adding Gaussian noise to the original map. As given by
the input catalogs, field A has a point source brightness limit of
KAB = 24.3, field B of KAB = 25.6. These limits are 5σ depths
for point sources in circular apertures of 2” diameter. In Fig. 8 we
show four simulated galaxies from field B as examples.
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Figure 8. A few simulated galaxies from our artificial deep field B. Images
in the top line cover ≈ 3.5′′ × 3.5′′, images in the bottom line cover ≈
1.8′′ × 1.8′′.

The star clusters are especially interesting for astrometry.
They provide an ensemble of several thousands of bright, point-
like sources that can be analyzed with standard tools developed for
point source astrometry. In each field we selected all star clusters
that were sufficiently isolated, meaning a distance of at least 30 mas
(about three resolution elements) to the next source. In total we
used 1600 sources in field A and 2174 sources in field B. In each
image we fit the clusters with 2D Gaussian brightness distributions
in order to accurately (meaning few milli-pixels in the best cases)
determine their positions. We then compared the results with the
true source positions on the original noise-free maps. The distribu-
tions of the deviations between true and measured positions provide
measures of astrometric accuracies.

We show the results for 10h integration times in Fig. 9. For
both fields we find distributions with 1σ-widths of ≈920µas (field
A) and ≈650µas (field B) per coordinate. These numbers corre-
spond to the typical measurement accuracies for individual star
clusters. The global astrometric accuracy is given by the standard
error of the mean of the distribution, i.e. σ/

√
N with N being the

number of sources.
We summarize the astrometric accuracies found for all fields

and integration times in Table 3. Not surprising, we find the high-
est accuracies of 23µas and 14µas (per coordinate) for fields A and
B, respectively, for the largest integration time of 10h. The errors
increase to about 65µas and 29µas at integration times of 1h. The
systematic difference between fields A and B originates from their
different depths: field B is based on a catalog that has a ≈1.3 magni-
tudes deeper brightness limit; it is therefore “richer” of sufficiently
bright targets. As MICADO will perform astrometric observations
of sources KAB < 26 (see also Sect. 1), the results found from
field B are actually more realistic for describing the performance of
MICADO. We can therefore conclude that total (i.e. the quadratic
sum of the values for both coordinates) astrometric accuracies of
≈20µas are realistic for integration times of order 10h when using
galactic star clusters as referencess.

Figure 9. Histograms of position errors found from using several thousand
point-like star clusters as references. These results are for fields A (top
panel) and B (bottom panel) at 10h integration time. Please note the dif-
ferent number axes scales.

So far, we have taken into account non-resolved (point-like)
sources as references only. However, the global extended light
distribution contains additional information. We therefore com-
puted 2D cross-correlations between different realizations of the
same “observations”. As reference we used one 7000×7000 pixels
(21”×21”) sub-field of field A containing seven galaxies. For each
integration time (1h, 4h, 10h) we computed three realizations of the
random noise map added to the original light distribution. For all
pairwise combinations we computed the 2D cross-correlations. We
calculated their centers by means of 2D Gaussian fits to the cen-
tral parts of the cross-correlation maps. The uncertainty of the map
centers provides a measure of astrometric accuracy. For all integra-
tion times we found very similar results: 4.5µas at 1h, 4.1µas at 4h,
and 3.9µas at 10h. This indicates that at these level the accuracy is
only weakly correlated with the SNR but dominated by systematic
effects. In any case the impressive accuracies of ≈4µas suggest that
using 2D cross-correlations of images can provide highly accurate
astrometry.

However, 2D cross-correlations cannot be used for relative
astrometry in a straight forward manner. By construction, cross-
correlations are only sensitive to shifts between images. They can-
not describe transformations like scalings, rotations, or higher order
transforms as discussed in Sect. 3. Using them for astrometry there-
fore requires a more sophisticated approach than computing the
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Table 3. Astrometric accuracies found from using several thousand point-
like star clusters as references. We give errors for the coordinates x and y as
function of field and integration time.

field A field B

tint [h] δx [µas] δy [µas] δx [µas] δy [µas]

10 23 23 14 14

4 30 36 17 17

1 58 65 29 29

cross-correlation between two (or more) images. One ansatz might
be to calculate cross-correlations for a sufficient number (about ten
or more) of sub-fields of the target area. This would provide a set of
relative position (changes). Feeding this dataset into a proper model
might result in a highly accurate coordinate transform.

From our analysis we conclude that the use of high-z galax-
ies as astrometric calibrators is feasible at the level of ≈20µas at
integration times of about 10h. This number assumes the use of
several thousand point-like star clusters as reference sources (also
assuming that such exist at intermediate to high redshift). Cross-
correlation of images might provide even better accuracies, but
would require a sophisticated computational scheme that can ac-
tually provide full coordinate transforms.

In some cases, one might consider separating the intra-epoch
and the inter-epoch calibration steps. Firstly, one can use a small
number of stars (as discussed earlier, six may be sufficient) for in-
tra-epoch (frame-to-frame) calibration. Proper adding of images al-
lows building up SNR sufficient for detection of and position mea-
surements on faint galaxies. Secondly, one can use these galaxies
for inter-epoch calibration.

4.10 Calibration of the Projected Pixel Scale

In Section 3 we have outlined the concepts of relative astrometry
and coordinate transforms. These schemes make use of sets of ref-
erence positions {xn

ref} in order to compute transformation matrices
for the n-th dataset. However, all transformation and calibration
steps we have discussed up to now are executed in image space,
i.e. in units of pixels. After removing non-linear distortions from
the data, one needs to calibrate the pixel scale as projected on sky
in order to accurately convert measured positions and motions into
angular units. We note that the projected pixel scales for the two
coordinates x, y may be different if the detector plane is tilted with
respect to the focal plane.

Calculating the scaling factors requires astrometric reference
points with known positions located in the target FOV. The number
of reference sources should be at least three in order to allow for
a full linear transformation. Fortunately, this calibration step needs
to be executed only once for a selected “master” (or “zero”) image.
All other images can be connected to the master image reference
frame via coordinate transforms, including the proper scaling (e.g.
Trippe et al. (2008)). Errors on the reference positions propagate
into the positions and motions calculated from the data.

There are several possibilities for obtaining very accurate ref-
erence source positions. One of them is the use of sources located in
the MICADO FOV and visible in both NIR and radio, e.g. QSOs or
maser stars. If radio-interferometric positions (e.g. VLBI) – which
are accurate on the sub-mas level – are at hand, the uncertainty on
the pixel scale can be very low (see, e.g., Reid et al. (2007) for the

case of the Galactic center). Another option is the use of stars from
the HIPPARCOS catalogue which provides a median position ac-
curacy of δx ≈ 1 mas (Perryman et al. (1997)). One should also
consider data from the future GAIA astrometry space mission for
calibration as soon as they become available. For the FOV of MI-
CADO, reference position accuracies of order 1 mas translate into
a relative scaling accuracy of

δx/x ≈ 1mas/53′′ ≈ 2 × 10−5

As discussed in Section 2, the science cases for E-
ELT/MICADO demand accurate measurements of positions and
proper motions over spatial scales from few ten µas (e.g. parallaxes
of globular clusters; see Sect. 2.3) to few hundred mas (e.g. stellar
orbits around Sgr A*; see Sect. 2.1). A relative pixel scale accuracy
of 2 × 10−5 corresponds to an error of 10 µas over an angular dis-
tance of 500 mas. We therefore conclude that the calibration of the
projected pixel scale introduces errors of ≈10µas at most.

5 RESULTS AND ERROR BUDGET

We have identified and discussed ten effects that might limit the ex-
pected astrometric accuracy of E-ELT/MICADO observations sys-
tematically. We have been able to quantify each of these sources of
error. From this, we can calculate a prediction for the error budget
of MICADO.

(i) For isolated point sources, detector sampling / binning does
not introduce noticable (≈1µas) errors as long as the pixel scale
does not exceed 3 mas/pix. For sources affected by crowding, using
a smaller scale of 1.5 mas/pix can improve the accuracy by factors
of about two compared to the 3 mas/pix case. Therefore MICADO
will use a pixel scale of 3 mas/pix as standard and a reduced scale
of 1.5 mas/pix for mapping crowded fields. For the error budget,
we can thus assume a sampling error

σsamp = 1 µas .

(ii) Instrumental geometric distortion needs to be taken into ac-
count by dedicated calibration procedures. We propose to imple-
ment a calibration mask into MICADO that illuminates the de-
tectors with a well-defined image. Such a mask would have to be
mapped with accuracies of ≈40nm. Based on our results in combi-
nation with published works using Hubble Space Telescope data,
we estimate that distortion can be corrected down to levels of ≈10–
30µas. For the error budget, we therefore use

σdist = 30 µas .

(iii) Telescope instabilities, notably plate scale instabilities and
instrumental rotations, are linear effects that can be absorbed by
coordinate transforms. Therefore they do not contribute to the error
budget.

(iv) Atmospheric achromatic differential refraction is important
(order 10 mas) only in linear terms which can absorbed by coordi-
nate tranforms. Higher-order contributions are of order 1µas, mean-
ing for the error budget

σADR = 1 µas .
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(v) Chromatic differential refraction introduces position errors
of the order ≈1 mas in NIR observations depending on relative
source colours. A tuneable ZnS/ZnSe atmospheric dispersion cor-
rector can reduce this effect to ≈10–20µas for “typical” science
cases. Extreme relative source colours might require the additional
use of narrowband filters and/or analytic a posteriori correction
schemes. For the error budget, we thus set

σCDR = 20 µas .

(vi) AO guide star measurement errors for N natural guide stars
can introduce distortions up to order N−1 into images, meaning 2nd
order distortions for the three NGS of MICADO. This effect can be
absorbed by coordinate transforms (of order N−1). It therefore does
not contribute to the error budget.

(vii) Atmospheric differential tilt jitter can introduce errors of
≈100µas into diffraction-limited E-ELT observations. It integrates
out with t−1/2. For MICADO which uses an MCAO system, the tilt
jitter error can be integrated down to ≈10µas within about 30 min-
utes of observation. Using dedicated coordinate transform allows
reaching this accuracy in shorter times. For the error budget, we
thus set

σTJ = 10 µas .

(viii) The anisoplanatism of the MAORY AO system introduces
uncertainties of up to ≈8µas. There appears to be no correlation of
this error with the position of a PSF in the FOV; it therefore can not
be calibrated out in a straight forward manner. Therefore we add it
to the error budget:

σaniso = 8 µas .

(ix) Depending on target field and science case, the use of galax-
ies as astrometric calibrators may be necessary. From a simulated
MICADO deep field we find that we can use several thousand non-
resolved galactic star clusters as point-like reference sources. How-
ever, good accuracies of ≈20µas require long intra-epoch integra-
tion times of about 10 hours; we consider this to be a somewhat
large but realistic timescale. We therefore use for the error budget

σgalaxies = 20 µas .

(x) The accuracy of the sky-projected pixel scale is limited by
the accuracy of astrometric positions of reference sources in the
FOV. Given the typical accuracies of present-day catalogues which
are of order 1 mas, we add to the error budget

σscale = 10 µas .

From the individual uncertainties listed above we can calcu-
late a total intrinsic astrometric accuracy for MICADO as

σsys =

√∑

i

σ2
i = 44µas . (18)

This number provides a systematic limit for astrometric accuracies
to be expected from MICADO data. Of course, this result corre-
sponds to a somewhat arbitrary “typical” case. As many parameters
like integration times, source colours, numbers and types of refer-
ence sources, etc. can vary over wide ranges, the actual σsys for
a specific observation can be quite different – in both directions –

from the one we quote here. Nevertheless, we conclude that we are
able to quantify the mean systematic astrometric accuracy achiev-
able with MICADO which is ≈40µas.

When discussing the accuracy of the measurement for a given
target, one of course needs to add the statistical measurement error
σL (Eq. 5) which scales with the SNR. For SNR=100, σL = 34µas,

and thus the combined error is
√
σ2

sys + σ2
L = 56µas. SNRs differ-

ent from 100 modify this number accordingly.

6 CONCLUSIONS

In this article we have studied the capabilities expected for the NIR
imager MICADO for the future 42-m European Extremely Large
Telescope with respect to accurate astrometry. A variety of science
cases requires long-term astrometric accuracies of ≈50µas. We dis-
cuss and quantify ten effects that potentially limit the astrometric
accuracy of MICADO. We conclude that the systematic accuracy
limit for astrometric observations with MICADO is σsys ≈ 40µas.
We find that astrometry at this accuracy level with MICADO re-
quires the fulfillment of several conditions:

• All images, regardless of their distance in time, need to be
combined via full coordinate transforms of second order or higher.
• MICADO needs to be equipped with an astrometric calibra-

tion mask for monitoring the instrumental distortion. The pixel
scale of the camera should not exceed the 3 mas/pix used in the
current design.
• Astrometric observations require decent integration times of at

least 30 minutes per epoch. This is unavoidable in order to average
out atmospheric tilt jitter. When using high-z galaxies as astromet-
ric reference points, integration times up to about 10 hours can be
necessary.

It is noteworthy that the effects discussed in this article already
affect observations collected with present 8m-class telescopes. In
his exhaustive analysis of NIR images obtained with VLT/NACO,
Fritz (2009) has been able to detect signatures of chromatic differ-
ential refraction and differential tilt jitter in his astrometric dataset.
He concludes that taking into account these effects can improve
the accuracies down to few hundred µas. This agrees with the find-
ings of Lazorenko (2006) and Lazorenko et al. (2007) who analyze
seeing-limited optical R-band (λcenter = 655nm) images taken with
VLT/FORS1+2. They conclude that they are able to achieve astro-
metric precisions (but not accuracies) of ≈100µas by using a special
scheme for scheduling observations and dedicated coordinate trans-
forms (although they neglect instrumental geometric distortion).

The analysis we provide here is set up for the specific case
of E-ELT/MICADO, but parts of our results are valid in general.
This study should thus contain valuable information for other fu-
ture 30–40m telescopes. As some of the effects we discuss are ac-
tually observed in present day 8m-class telescope data, our analysis
might also be helpful for the calibration of data already taken. We
therefore expect that our work is of interest well beyond the E-ELT
community.
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